
Antonio Gazol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/432159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	To die or not to die: early warnings of tree dieback in response to a severe drought. Journal of Ecology, 2015, 103, 44-57.	1.9	433
2	Forest resilience to drought varies across biomes. Global Change Biology, 2018, 24, 2143-2158.	4.2	267
3	Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7551-7556.	3.3	254
4	Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 2017, 26, 166-176.	2.7	232
5	Distinct effects of climate warming on populations of silver fir (<i>Abies alba</i>) across Europe. Journal of Biogeography, 2015, 42, 1150-1162.	1.4	140
6	Assessing forest vulnerability to climate warming using a processâ€based model of tree growth: bad prospects for rearâ€edges. Global Change Biology, 2017, 23, 2705-2719.	4.2	128
7	Functional diversity enhances silver fir growth resilience to an extreme drought. Journal of Ecology, 2016, 104, 1063-1075.	1.9	119
8	Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sensing of Environment, 2016, 187, 14-29.	4.6	119
9	Wood anatomy and carbonâ€isotope discrimination support longâ€term hydraulic deterioration as a major cause of droughtâ€induced dieback. Global Change Biology, 2016, 22, 2125-2137.	4.2	119
10	Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	104
11	Aleppo pine forests from across Spain show drought-induced growth decline and partial recovery. Agricultural and Forest Meteorology, 2017, 232, 186-194.	1.9	99
12	Attributing forest responses to globalâ€change drivers: limited evidence of a <scp>CO</scp> ₂ â€fertilization effect in Iberian pine growth. Journal of Biogeography, 2015, 42, 2220-2233.	1.4	84
13	Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in <i>Pinus pinaster</i> . Journal of Biogeography, 2018, 45, 1126-1139.	1.4	77
14	Past logging, drought and pathogens interact and contribute to forest dieback. Agricultural and Forest Meteorology, 2015, 208, 85-94.	1.9	76
15	Disparate effects of globalâ€change drivers on mountain conifer forests: warmingâ€induced growth enhancement in young trees vs. <scp>CO</scp> ₂ fertilization in old trees from wet sites. Global Change Biology, 2015, 21, 738-749.	4.2	75
16	Drought legacies are short, prevail in dry conifer forests and depend on growth variability. Journal of Ecology, 2020, 108, 2473-2484.	1.9	74
17	Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Annals of Forest Science, 2018, 75, 1.	0.8	72
18	Compound climate events increase tree drought mortality across European forests. Science of the Total Environment, 2022, 816, 151604.	3.9	69

#	Article	IF	CITATIONS
19	Size Matters a Lot: Drought-Affected Italian Oaks Are Smaller and Show Lower Growth Prior to Tree Death. Frontiers in Plant Science, 2017, 8, 135.	1.7	68
20	Habitat filtering determines the functional niche occupancy of plant communities worldwide. Journal of Ecology, 2018, 106, 1001-1009.	1.9	66
21	Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. Forest Ecology and Management, 2016, 381, 157-167.	1.4	63
22	Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of the Total Environment, 2021, 784, 147222.	3.9	61
23	A negative heterogeneity–diversity relationship found in experimental grassland communities. Oecologia, 2013, 173, 545-555.	0.9	60
24	Soil Nutrient Content Influences the Abundance of Soil Microbes but Not Plant Biomass at the Small-Scale. PLoS ONE, 2014, 9, e91998.	1.1	60
25	Microfragmentation concept explains non-positive environmental heterogeneity–diversity relationships. Oecologia, 2013, 171, 217-226.	0.9	57
26	Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands. Science of the Total Environment, 2018, 615, 1518-1526.	3.9	57
27	Evidence of nonâ€stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests. Global Change Biology, 2020, 26, 5063-5076.	4.2	56
28	Intraspecific competition replaces interspecific facilitation as abiotic stress decreases: The shifting nature of plant–plant interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 226-236.	1.1	55
29	Landscape―and smallâ€scale determinants of grassland species diversity: direct and indirect influences. Ecography, 2012, 35, 944-951.	2.1	52
30	Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 2018, 630, 422-431.	3.9	49
31	Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia, 2016, 182, 1175-1185.	0.9	48
32	Global fading of the temperature–growth coupling at alpine and polar treelines. Global Change Biology, 2021, 27, 1879-1889.	4.2	46
33	Coâ€occurring grassland species vary in their responses to fineâ€scale soil heterogeneity. Journal of Vegetation Science, 2016, 27, 1012-1022.	1.1	44
34	Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent. Global Change Biology, 2017, 23, 3169-3180.	4.2	44
35	Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands. Forests, 2018, 9, 524.	0.9	43
36	Long-term nutrient imbalances linked to drought-triggered forest dieback. Science of the Total Environment, 2019, 690, 1254-1267.	3.9	42

#	Article	IF	CITATIONS
37	Impact of alien pines on local arbuscular mycorrhizal fungal communities—evidence from two continents. FEMS Microbiology Ecology, 2016, 92, fiw073.	1.3	41
38	Soil organic carbon in an old-growth temperate forest: Spatial pattern, determinants and bias in its quantification. Geoderma, 2013, 195-196, 48-55.	2.3	40
39	Summer drought and spring frost, but not their interaction, constrain European beech and Silver fir growth in their southern distribution limits. Agricultural and Forest Meteorology, 2019, 278, 107695.	1.9	40
40	What happens below the canopy? Direct and indirect influences of the dominant species on forest vertical layers. Oikos, 2012, 121, 1145-1153.	1.2	39
41	Scale specific determinants of tree diversity in an old growth temperate forest in China. Basic and Applied Ecology, 2011, 12, 488-495.	1.2	37
42	Post-drought Resilience After Forest Die-Off: Shifts in Regeneration, Composition, Growth and Productivity. Frontiers in Plant Science, 2018, 9, 1546.	1.7	36
43	Functional diversity differently shapes growth resilience to drought for coâ€existing pine species. Journal of Vegetation Science, 2018, 29, 265-275.	1.1	34
44	Wood density and hydraulic traits influence species' growth response to drought across biomes. Global Change Biology, 2022, 28, 3871-3882.	4.2	34
45	The functional assembly of experimental grasslands in relation to fertility and resource heterogeneity. Functional Ecology, 2014, 28, 509-519.	1.7	33
46	Know your limits? Climate extremes impact the range of Scots pine in unexpected places. Annals of Botany, 2015, 116, mcv124.	1.4	33
47	Linking tree-ring growth and satellite-derived gross primary growth in multiple forest biomes. Temporal-scale matters. Ecological Indicators, 2020, 108, 105753.	2.6	33
48	Tree growth is more limited by drought in rear-edge forests most of the times. Forest Ecosystems, 2021, 8, .	1.3	33
49	Competition modulates the response of growth to climate in pure and mixed Abies pinsapo subsp. Maroccana forests in northern Morocco. Forest Ecology and Management, 2020, 459, 117847.	1.4	32
50	Tracking the impact of drought on functionally different woody plants in a Mediterranean scrubland ecosystem. Plant Ecology, 2017, 218, 1009-1020.	0.7	31
51	Different response to environmental factors and spatial variables of two attributes (cover and) Tj ETQq1 1 0.7	84314 rgBT 1.4	/Oyerlock 10
52	Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecology, 2012, 213, 1687-1698.	0.7	30
53	Recent decadal drought reverts warmingâ€ŧriggered growth enhancement in contrasting climates in the southern Andes tree line. Journal of Biogeography, 2019, 46, 1367-1379.	1.4	30
54	Drought Decreases Growth and Increases Mortality of Coexisting Native and Introduced Tree Species in a Temperate Floodplain Forest. Forests, 2018, 9, 205.	0.9	29

#	Article	IF	CITATIONS
55	Withinâ€community environmental variability drives trait variability in speciesâ€rich grasslands. Journal of Vegetation Science, 2017, 28, 303-312.	1.1	28
56	Geographically Structured Growth decline of Rear-Edge Iberian Fagus sylvatica Forests After the 1980s Shift Toward a Warmer Climate. Ecosystems, 2019, 22, 1325-1337.	1.6	28
57	Variation of plant diversity in a temperate unmanaged forest in northern Spain: behind the environmental and spatial explanation. Plant Ecology, 2010, 207, 1-11.	0.7	25
58	Beneath the canopy: Linking drought-induced forest die off and changes in soil properties. Forest Ecology and Management, 2018, 422, 294-302.	1.4	25
59	Snow dynamics influence tree growth by controlling soil temperature in mountain pine forests. Agricultural and Forest Meteorology, 2021, 296, 108205.	1.9	22
60	Impacts of recurrent dry and wet years alter longâ€ŧerm tree growth trajectories. Journal of Ecology, 2021, 109, 1561-1574.	1.9	22
61	Mediterranean old-growth forests exhibit resistance to climate warming. Science of the Total Environment, 2021, 801, 149684.	3.9	21
62	Forecasting Forest Vulnerability to Drought in Pyrenean Silver Fir Forests Showing Dieback. Frontiers in Forests and Global Change, 2020, 3, .	1.0	20
63	Drought and cold spells trigger dieback of temperate oak and beech forests in northern Spain. Dendrochronologia, 2021, 66, 125812.	1.0	20
64	Plant species composition in a temperate forest: Multi-scale patterns and determinants. Acta Oecologica, 2010, 36, 634-644.	0.5	19
65	Differences in temperature sensitivity and drought recovery between natural stands and plantations of conifers are species-specific. Science of the Total Environment, 2021, 796, 148930.	3.9	19
66	Tree-ring density and carbon isotope composition are early-warning signals of drought-induced mortality in the drought tolerant Canary Island pine. Agricultural and Forest Meteorology, 2021, 310, 108634.	1.9	19
67	Tree Species Are Differently Impacted by Cumulative Drought Stress and Present Higher Growth Synchrony in Dry Places. Frontiers in Forests and Global Change, 2020, 3, .	1.0	18
68	Run to the hills: Forest growth responsiveness to drought increased at higher elevation during the late 20th century. Science of the Total Environment, 2021, 772, 145286.	3.9	18
69	Detecting snow-related signals in radial growth of Pinus uncinata mountain forests. Dendrochronologia, 2019, 57, 125622.	1.0	17
70	Alpine Ecology in the Iberian Peninsula: What Do We Know, and What Do We Need to Learn?. Mountain Research and Development, 2013, 33, 437-442.	0.4	16
71	Pattern and dynamics of biomass stock in old growth forests: The role of habitat and tree size. Acta Oecologica, 2016, 75, 15-23.	0.5	15
72	The decline of Algerian Cedrus atlantica forests is driven by a climate shift towards drier conditions. Dendrochronologia, 2019, 55, 60-70.	1.0	15

#	Article	IF	CITATIONS
73	The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Science of the Total Environment, 2021, 769, 144702.	3.9	15
74	The performance of Mediterranean subshrubs depends more on microsite than on regional climate conditions. Journal of Vegetation Science, 2012, 23, 1062-1070.	1.1	14
75	Climate Warming Alters Age-Dependent Growth Sensitivity to Temperature in Eurasian Alpine Treelines. Forests, 2018, 9, 688.	0.9	14
76	Dieback and mortality of junipers caused by drought: Dissimilar growth and wood isotope patterns preceding shrub death. Agricultural and Forest Meteorology, 2020, 291, 108078.	1.9	14
77	High resilience, but low viability, of pine plantations in the face of a shift towards a drier climate. Forest Ecology and Management, 2021, 479, 118537.	1.4	14
78	Climate Differently Impacts the Growth of Coexisting Trees and Shrubs under Semi-Arid Mediterranean Conditions. Forests, 2021, 12, 381.	0.9	14
79	Drought stress and pests increase defoliation and mortality rates in vulnerable Abies pinsapo forests. Forest Ecology and Management, 2022, 504, 119824.	1.4	13
80	The role of nutritional impairment in carbonâ€water balance of silver fir droughtâ€induced dieback. Global Change Biology, 2022, 28, 4439-4458.	4.2	13
81	Tree growth response to drought partially explains regionalâ€scale growth and mortality patterns in Iberian forests. Ecological Applications, 2022, 32, e2589.	1.8	13
82	Changes in plant taxonomic and functional diversity patterns following treeline advances in the South Urals. Plant Ecology and Diversity, 2017, 10, 283-292.	1.0	12
83	Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations. Journal of Ecology, 2018, 106, 2218-2229.	1.9	12
84	Modeling Climate Impacts on Tree Growth to Assess Tree Vulnerability to Drought During Forest Dieback. Frontiers in Plant Science, 2021, 12, 672855.	1.7	12
85	Pine processionary moth outbreaks cause longer growth legacies than drought and are linked to the North Atlantic Oscillation. Science of the Total Environment, 2022, 819, 153041.	3.9	12
86	Drought Drives Growth and Mortality Rates in Three Pine Species under Mediterranean Conditions. Forests, 2021, 12, 1700.	0.9	12
87	Remaking a stand: Links between genetic diversity and tree growth in expanding Mountain pine populations. Forest Ecology and Management, 2020, 472, 118244.	1.4	11
88	Scale-specific determinants of a mixed beech and oak seedling–sapling bank under different environmental and biotic conditions. Plant Ecology, 2010, 211, 37-48.	0.7	10
89	Patterns and Drivers of Pine Processionary Moth Defoliation in Mediterranean Mountain Forests. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	10
90	Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nature Ecology and Evolution, 2021, 5, 733-735.	3.4	10

#	Article	IF	CITATIONS
91	Coupled climate–forest growth shifts in the Chilean Patagonia are decoupled from trends in water–use efficiency. Agricultural and Forest Meteorology, 2018, 259, 222-231.	1.9	9
92	The Role of Canopy Cover Dynamics over a Decade of Changes in the Understory of an Atlantic Beech-Oak Forest. Forests, 2021, 12, 938.	0.9	9
93	The Multiple Causes of Forest Decline in Spain: Drought, Historical Logging, Competition and Biotic Stressors. Ecological Studies, 2017, , 307-323.	0.4	8
94	Linkages between Climate, Radial Growth and Defoliation in Abies pinsapo Forests from Southern Spain. Forests, 2020, 11, 1002.	0.9	7
95	Effects of Windthrows on Forest Cover, Tree Growth and Soil Characteristics in Drought-Prone Pine Plantations. Forests, 2021, 12, 817.	0.9	7
96	Silver fir growth responses to drought depend on interactions between tree characteristics, soil and neighbourhood features. Forest Ecology and Management, 2021, 480, 118625.	1.4	6
97	Land-use practices (coppices and dehesas) and management intensity modulate responses of Holm oak growth to drought. Agricultural and Forest Meteorology, 2021, 297, 108235.	1.9	6
98	Role of biotic factors and droughts in the forest decline: contributions from dendroecology. Ecosistemas, 2015, 24, 15-23.	0.2	6
99	Fertilization triggers 11Âyr of changes in community assembly in Mediterranean grassland. Journal of Vegetation Science, 2016, 27, 728-738.	1.1	5
100	Scale-dependent effect of biotic interactions and environmental conditions in community assembly: insight from a large temperate forest plot. Plant Ecology, 2016, 217, 1003-1014.	0.7	5
101	Climate windows of intra-annual growth and post-drought recovery in Mediterranean trees. Agricultural and Forest Meteorology, 2021, 308-309, 108606.	1.9	5
102	Will silver fir be under higher risk due to drought? A comment on Walder et al. (2021). Forest Ecology and Management, 2022, 503, 119826.	1.4	5
103	Longâ€ŧerm and yearâ€ŧoâ€year stability and its drivers in a Mediterranean grassland. Journal of Ecology, 2022, 110, 1174-1188.	1.9	5
104	Intraspecific trait variation, growth, and altered soil conditions at tree species distribution limits: From the alpine treeline to the rear edge. Agricultural and Forest Meteorology, 2022, 315, 108811.	1.9	4
105	Effects of Global Change on Tree Growth and Vigor of Mediterranean Pines. Managing Forest Ecosystems, 2021, , 237-249.	0.4	3
106	Mixed Pine Forests in a Hotter and Drier World: The Great Resilience to Drought of Aleppo Pine Benefits It Over Other Coexisting Pine Species. Frontiers in Forests and Global Change, 0, 5, .	1.0	3
107	Tree growth and treeline responses to temperature: Different questions and concepts. Global Change Biology, 2021, 27, e13-e14.	4.2	2
108	Shifting Precipitation Patterns Drive Growth Variability and Drought Resilience of European Atlas Cedar Plantations. Forests, 2021, 12, 1751.	0.9	1

0

#	Article	IF	CITATIONS
109	Drivers of a riparian forest specialist (Carex remota, Cyperaceae): It is not only a matter of soil moisture. American Journal of Botany, 2014, 101, 1286-1292.	0.8	0

110 Climate change and forest health: Detecting dieback hotspots. , 2022, , 99-106.