
Mitchell P Levesque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/432153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVIDâ€19 patients. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 595-608.	5.7	21
2	STK11 Prevents Invasion through Signal Transducer and Activator of Transcription 3/5 and FAK Repression in Cutaneous Melanoma. Journal of Investigative Dermatology, 2022, 142, 1171-1182.e10.	0.7	5
3	Preclinical Characterization of a Next-Generation Brain Permeable, Paradox Breaker BRAF Inhibitor. Clinical Cancer Research, 2022, 28, 770-780.	7.0	10
4	Advances in the drug management of basal cell carcinoma. Expert Opinion on Pharmacotherapy, 2022, 23, 573-582.	1.8	2
5	Mycobacterial infection aggravates Helicobacter pylori-induced gastric preneoplastic pathology by redirection of de novo induced Treg cells. Cell Reports, 2022, 38, 110359.	6.4	6
6	Novel Blood Vascular Endothelial Subtype-Specific Markers in Human Skin Unearthed by Single-Cell Transcriptomic Profiling. Cells, 2022, 11, 1111.	4.1	6
7	Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Science Immunology, 2022, 7, eabk1692.	11.9	100
8	A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans. PLoS Biology, 2022, 20, e3001317.	5.6	7
9	Improved Survival Prediction by Combining Radiological Imaging and S-100B Levels Into a Multivariate Model in Metastatic Melanoma Patients Treated With Immune Checkpoint Inhibition. Frontiers in Oncology, 2022, 12, 830627.	2.8	2
10	An Optimized Tissue Dissociation Protocol for Single-Cell RNA Sequencing Analysis of Fresh and Cultured Human Skin Biopsies. Frontiers in Cell and Developmental Biology, 2022, 10, 872688.	3.7	12
11	Combinations of Toll-like receptor 8 agonist TL8-506 activate human tumor-derived dendritic cells. , 2022, 10, e004268.		8
12	The Role of Extracellular Vesicles in Melanoma Progression. Cancers, 2022, 14, 3086.	3.7	15
13	Defining the molecular landscape of cancer-associated stroma in cutaneous squamous cell carcinoma. Journal of Investigative Dermatology, 2022, , .	0.7	3
14	NRAS ^{Q61K} melanoma tumor formation is reduced by p38â€MAPK14 activation in zebrafish models and NRASâ€mutated human melanoma cells. Pigment Cell and Melanoma Research, 2021, 34, 150-162.	3.3	6
15	Multi-Dimensional Biomarkers for the Personalized Treatment of Melanoma. , 2021, , 361-364.		1
16	Protein tyrosine phosphatase nonreceptor type 2 controls colorectal cancer development. Journal of Clinical Investigation, 2021, 131, .	8.2	16
17	Evaluation of the Interplay between the ADAR Editome and Immunotherapy in Melanoma. Non-coding RNA, 2021, 7, 5.	2.6	3
18	Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling. Nature Communications, 2021, 12, 1434.	12.8	46

#	Article	IF	CITATIONS
19	Identification of bacteria-derived HLA-bound peptides in melanoma. Nature, 2021, 592, 138-143.	27.8	187
20	The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell, 2021, 39, 288-293.	16.8	71
21	Tumor-derived GDF-15 to suppress t-lymphocyte recruitment to the tumor microenvironment resulting in resistance to ANTI-PD-1 treatment Journal of Clinical Oncology, 2021, 39, e14532-e14532.	1.6	1
22	Who's Driving? Switch of Drivers in Immunotherapy-Treated Progressing Sinonasal Melanoma. Cancers, 2021, 13, 2725.	3.7	7
23	Prolonged Unfrozen Storage and Repeated Freeze-Thawing of SARS-CoV-2 Patient Samples Have Minor Effects on SARS-CoV-2 Detectability by RT-PCR. Journal of Molecular Diagnostics, 2021, 23, 691-697.	2.8	19
24	Frequency, Treatment and Outcome of Immune-Related Toxicities in Patients with Immune-Checkpoint Inhibitors for Advanced Melanoma: Results from an Institutional Database Analysis. Cancers, 2021, 13, 2931.	3.7	19
25	Collection and preprocessing of fine needle aspirate patient samples for single cell profiling and data analysis. STAR Protocols, 2021, 2, 100581.	1.2	1
26	Clinicopathological and Genomic Profiles of Atypical Fibroxanthoma and Pleomorphic Dermal Sarcoma Identify Overlapping Signatures with a High Mutational Burden. Genes, 2021, 12, 974.	2.4	7
27	A Comparative Study of Real-Time RT-PCR–Based SARS-CoV-2 Detection Methods and Its Application to Human-Derived and Surface Swabbed Material. Journal of Molecular Diagnostics, 2021, 23, 796-804.	2.8	24
28	Abstract 2222: The molecular landscape of acral lentiginous melanoma in Mexican patients. , 2021, , .		0
29	Microgreens: Functional Food with Antiproliferative Cancer Properties Influenced by Light. Foods, 2021, 10, 1690.	4.3	16
30	Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nature Communications, 2021, 12, 5056.	12.8	15
31	Establishing standardized immune phenotyping of metastatic melanoma by digital pathology. Laboratory Investigation, 2021, 101, 1561-1570.	3.7	15
32	Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell, 2021, 39, 1135-1149.e8.	16.8	83
33	Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Developmental Cell, 2021, 56, 2808-2825.e10.	7.0	37
34	Real-life data for first-line combination immune-checkpoint inhibition and targeted therapy in patients with melanoma brain metastases. European Journal of Cancer, 2021, 156, 149-163.	2.8	11
35	MITF reprograms the extracellular matrix and focal adhesion in melanoma. ELife, 2021, 10, .	6.0	45
36	Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. Journal of Experimental Medicine, 2021, 218, .	8.5	31

#	Article	IF	CITATIONS
37	IL-12 regulates type 3 immunity through interfollicular keratinocytes in psoriasiform inflammation. Science Immunology, 2021, 6, eabg9012.	11.9	14
38	Specific Activation of the CD271 Intracellular Domain in Combination with Chemotherapy or Targeted Therapy Inhibits Melanoma Progression. Cancer Research, 2021, 81, 6044-6057.	0.9	7
39	Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. Journal of Clinical Investigation, 2021, 131, .	8.2	15
40	Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nature Cancer, 2021, 2, 1387-1405.	13.2	83
41	568â€Tumor-derived GDF-15 prevents therapy success of checkpoint inhibitors by blocking T-lymphocyte recruitment. , 2021, 9, A597-A597.		0
42	Molecular, Immunological, and Clinical Features Associated With Lymphoid Neogenesis in Muscle Invasive Bladder Cancer. Frontiers in Immunology, 2021, 12, 793992.	4.8	14
43	Inhibition of p38/MK2 Signaling Prevents Vascular Invasion of Melanoma. Journal of Investigative Dermatology, 2020, 140, 878-890.e5.	0.7	13
44	A genomeâ€wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS â€mutant melanoma. Pigment Cell and Melanoma Research, 2020, 33, 334-344.	3.3	23
45	Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nature Medicine, 2020, 26, 1865-1877.	30.7	62
46	Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nature Communications, 2020, 11, 5259.	12.8	102
47	The ALPK1/TIFA/NF-κB axis links a bacterial carcinogen to R-loop-induced replication stress. Nature Communications, 2020, 11, 5117.	12.8	67
48	Retrospective Analysis of Treatment and Complications of Immune Checkpoint Inhibitor-Associated Colitis: Histological Ulcerations as Potential Predictor for a Steroid-Refractory Disease Course. Inflammatory Intestinal Diseases, 2020, 5, 109-116.	1.9	17
49	Toxicity of combined targeted therapy and concurrent radiotherapy in metastatic melanoma patients: a single-center retrospective analysis. Melanoma Research, 2020, 30, 552-561.	1.2	5
50	Multi-site clonality analysis uncovers pervasive heterogeneity across melanoma metastases. Nature Communications, 2020, 11, 4306.	12.8	26
51	Targeting PHGDH Upregulation Reduces Glutathione Levels and Resensitizes Resistant NRAS-Mutant Melanoma to MAPK Kinase Inhibition. Journal of Investigative Dermatology, 2020, 140, 2242-2252.e7.	0.7	23
52	The role of cyclin D1 and Kiâ€67 in the development and prognostication of thin melanoma. Histopathology, 2020, 77, 460-470.	2.9	13
53	SPANX Control of Lamin A/C Modulates Nuclear Architecture and Promotes Melanoma Growth. Molecular Cancer Research, 2020, 18, 1560-1573.	3.4	13
54	The EMT Transcription Factor ZEB2 Promotes Proliferation of Primary and Metastatic Melanoma While Suppressing an Invasive, Mesenchymal-Like Phenotype. Cancer Research, 2020, 80, 2983-2995.	0.9	51

#	Article	IF	CITATIONS
55	Lipoconstruct surface topography grating size influences vascularization onset in the dorsal skinfold chamber model. Acta Biomaterialia, 2020, 106, 136-144.	8.3	2
56	Temporal activation of WNT/β-catenin signaling is sufficient to inhibit SOX10 expression and block melanoma growth. Oncogene, 2020, 39, 4132-4154.	5.9	23
57	Radiomics, Tumor Volume, and Blood Biomarkers for Early Prediction of Pseudoprogression in Patients with Metastatic Melanoma Treated with Immune Checkpoint Inhibition. Clinical Cancer Research, 2020, 26, 4414-4425.	7.0	70
58	SCIM: universal single-cell matching with unpaired feature sets. Bioinformatics, 2020, 36, i919-i927.	4.1	37
59	Blood-based kinase activity profiling: a potential predictor of response to immune checkpoint inhibition in metastatic cancer. , 2020, 8, e001607.		4
60	Serum CD73 is a prognostic factor in patients with metastatic melanoma and is associated with response to anti-PD-1 therapy. , 2020, 8, e001689.		33
61	VLA-4 mediated adhesion of melanoma cells on the blood–brain barrier is the critical cue for melanoma cell intercalation and barrier disruption. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1995-2010.	4.3	13
62	Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nature Communications, 2019, 10, 3163.	12.8	205
63	A Fatty Acid Oxidation-dependent Metabolic Shift Regulates the Adaptation of <i>BRAF</i> -mutated Melanoma to MAPK Inhibitors. Clinical Cancer Research, 2019, 25, 6852-6867.	7.0	74
64	Morpho-Molecular Assessment Indicates New Prognostic Aspects and Personalized Therapeutic Options in Sinonasal Melanoma. Cancers, 2019, 11, 1329.	3.7	9
65	Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5â^'/â^' mice. Nature Communications, 2019, 10, 1492.	12.8	114
66	The NLRP1 Inflammasome Pathway Is Silenced in Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2019, 139, 1788-1797.e6.	0.7	16
67	Yin Yang 1 Orchestrates a Metabolic Program Required for Both Neural Crest Development and Melanoma Formation. Cell Stem Cell, 2019, 24, 637-653.e9.	11.1	44
68	Antibodies as biomarker candidates for response and survival to checkpoint inhibitors in melanoma patients. , 2019, 7, 50.		44
69	Genetic and Environmental Determinants of Immune Response to Cutaneous Melanoma. Cancer Research, 2019, 79, 2684-2696.	0.9	45
70	Immunoglobulin G and Subclasses as Potential Biomarkers in Metastatic Melanoma Patients Starting Checkpoint Inhibitor Treatment. Journal of Immunotherapy, 2019, 42, 89-93.	2.4	21
71	Proteomic identification of a marker signature for <scp>MAPK</scp> i resistance in melanoma. EMBO Journal, 2019, 38, e95874.	7.8	26
72	Peripheral Blood TCR Repertoire Profiling May Facilitate Patient Stratification for Immunotherapy against Melanoma. Cancer Immunology Research, 2019, 7, 77-85.	3.4	114

#	Article	IF	CITATIONS
73	Bioinformatics for precision oncology. Briefings in Bioinformatics, 2019, 20, 778-788.	6.5	49
74	SMAD signaling promotes melanoma metastasis independently of phenotype switching. Journal of Clinical Investigation, 2019, 129, 2702-2716.	8.2	41
75	Delta-radiomics for prediction of pseudoprogression in malignant melanoma treated with immune checkpoint inhibition Journal of Clinical Oncology, 2019, 37, 9575-9575.	1.6	1
76	NGS-pipe: a flexible, easily extendable and highly configurable framework for NGS analysis. Bioinformatics, 2018, 34, 107-108.	4.1	25
77	Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Research, 2018, 78, 1308-1320.	0.9	238
78	High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nature Medicine, 2018, 24, 144-153.	30.7	564
79	Embryonic bone morphogenetic protein and nodal induce invasion in melanocytes and melanoma cells. Biology Open, 2018, 7, .	1.2	5
80	Small molecule promotes \hat{l}^2 -catenin citrullination and inhibits Wnt signaling in cancer. Nature Chemical Biology, 2018, 14, 94-101.	8.0	105
81	SwissMTB: establishing comprehensive molecular cancer diagnostics in Swiss clinics. BMC Medical Informatics and Decision Making, 2018, 18, 89.	3.0	18
82	Induction of Paracrine Signaling in Metastatic Melanoma Cells by PPARÎ ³ Agonist Rosiglitazone Activates Stromal Cells and Enhances Tumor Growth. Cancer Research, 2018, 78, 6447-6461.	0.9	18
83	EZH2-Mediated Primary Cilium Deconstruction Drives Metastatic Melanoma Formation. Cancer Cell, 2018, 34, 69-84.e14.	16.8	123
84	Melanoma Immunotherapy: Next-Generation Biomarkers. Frontiers in Oncology, 2018, 8, 178.	2.8	53
85	Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell, 2018, 174, 843-855.e19.	28.9	514
86	Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases. Clinical Proteomics, 2018, 15, 13.	2.1	17
87	Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread. Science Advances, 2018, 4, eaat4758.	10.3	67
88	Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. Journal of Clinical Investigation, 2018, 128, 5531-5548.	8.2	40
89	A prognostic gene-signature based identification of high-risk thin melanomas Journal of Clinical Oncology, 2018, 36, e21575-e21575.	1.6	5
90	Blood-based multiplex kinase activity profiling as a predictive marker for clinical response to checkpoint blockade in advanced melanoma Journal of Clinical Oncology, 2018, 36, 9579-9579.	1.6	1

#	Article	IF	CITATIONS
91	MAPK pathway in melanoma part II—secondary and adaptive resistance mechanisms to BRAF inhibition. European Journal of Cancer, 2017, 73, 93-101.	2.8	69
92	The mitogen-activated protein kinase pathway in melanoma part I – Activation and primary resistance mechanisms to BRAF inhibition. European Journal of Cancer, 2017, 73, 85-92.	2.8	96
93	Multicenter, real-life experience with checkpoint inhibitors and targeted therapy agents in advanced melanoma patients in Switzerland. Melanoma Research, 2017, 27, 358-368.	1.2	20
94	Metastatic melanoma moves on: translational science in the era of personalized medicine. Cancer and Metastasis Reviews, 2017, 36, 7-21.	5.9	16
95	Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy. British Journal of Cancer, 2017, 116, 1141-1147.	6.4	112
96	MEK inhibition and immune responses in advanced melanoma. Oncolmmunology, 2017, 6, e1335843.	4.6	15
97	Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Molecular Medicine, 2017, 9, 1011-1029.	6.9	63
98	HLA-A*26 Is Correlated With Response to Nivolumab in Japanese Melanoma Patients. Journal of Investigative Dermatology, 2017, 137, 2443-2444.	0.7	10
99	The low affinity neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nature Communications, 2017, 8, 1988.	12.8	64
100	Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547, 453-457.	27.8	1,194
101	CyTOF workflow: Differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research, 2017, 6, 748.	1.6	312
102	CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research, 2017, 6, 748.	1.6	244
103	mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition. Oncotarget, 2017, 8, 69204-69218.	1.8	21
104	Co-existence of <i>BRAF</i> and <i>NRAS</i> driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 2016, 7, 77163-77174.	1.8	73
105	A Transcriptionally Inactive ATF2 Variant Drives Melanomagenesis. Cell Reports, 2016, 15, 1884-1892.	6.4	21
106	Perturbing resistance: a network perspective. Pigment Cell and Melanoma Research, 2016, 29, 5-7.	3.3	1
107	Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages. Scientific Reports, 2016, 6, 29914.	3.3	99
108	Proteomics approaches to understanding mitogen-activated protein kinase inhibitor resistance in melanoma. Current Opinion in Oncology, 2016, 28, 172-179.	2.4	10

#	Article	IF	CITATIONS
109	Romidepsin and Azacitidine Synergize in their Epigenetic Modulatory Effects to Induce Apoptosis in CTCL. Clinical Cancer Research, 2016, 22, 2020-2031.	7.0	51
110	Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell, 2016, 29, 270-284.	16.8	198
111	The peripheral blood TCR repertoire to facilitate patient stratification for immune checkpoint blockade inhibition in metastatic melanoma Journal of Clinical Oncology, 2016, 34, 3026-3026.	1.6	3
112	Derivation and validation of a prediction scale for response to PD-1 monotherapy Journal of Clinical Oncology, 2016, 34, 9514-9514.	1.6	2
113	Correlation between metastatic site and response to anti- <i>Programmed Death-1</i> (PD-1) agents in melanoma Journal of Clinical Oncology, 2016, 34, 9549-9549.	1.6	12
114	PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas. Oncotarget, 2016, 7, 75551-75560.	1.8	28
115	Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget, 2016, 7, 83554-83569.	1.8	44
116	Melanoma's next top model, it is in the air. Experimental Dermatology, 2015, 24, 659-660.	2.9	11
117	A new live ell biobank workflow efficiently recovers heterogeneous melanoma cells from native biopsies. Experimental Dermatology, 2015, 24, 377-380.	2.9	31
118	Methylation-dependent SOX9 expression mediates invasion in human melanoma cells and is a negative prognostic factor in advanced melanoma. Genome Biology, 2015, 16, 42.	8.8	76
119	IL-4 abrogates T _H 17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2163-2168.	7.1	151
120	Nrf2 Activation Promotes Keratinocyte Survival during Early Skin Carcinogenesis via Metabolic Alterations. Cancer Research, 2015, 75, 4817-4829.	0.9	40
121	Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Reports, 2015, 11, 1458-1473.	6.4	55
122	The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nature Communications, 2015, 6, 6051.	12.8	281
123	Hedgehog Pathway Inhibitors Promote Adaptive Immune Responses in Basal Cell Carcinoma. Clinical Cancer Research, 2015, 21, 1289-1297.	7.0	101
124	Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma. PLoS Genetics, 2015, 11, e1004877.	3.5	85
125	Hedgehog signaling in basal cell carcinoma. Journal of Dermatological Science, 2015, 78, 95-100.	1.9	55
126	Ingenol Mebutate Signals via PKC/MEK/ERK in Keratinocytes and Induces Interleukin Decoy Receptors	4.1	31

#	Article	IF	CITATIONS
127	Data mining The Cancer Genome Atlas in the era of precision cancer medicine. Swiss Medical Weekly, 2015, 145, w14183.	1.6	38
128	To B-(RAF) or Not to Be. Journal of Investigative Dermatology, 2014, 134, 1200-1201.	0.7	0
129	Coexpression of SOX10/CD271 (p75 ^{NTR}) and β-Galactosidase in Large to Giant Congenital Melanocytic Nevi of Pediatric Patients. Dermatopathology (Basel, Switzerland), 2014, 1, 35-46.	1.5	3
130	Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature, 2013, 494, 251-255.	27.8	665
131	Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy, 2013, 5, 169-182.	2.0	27
132	Hypoxia Contributes to Melanoma Heterogeneity by Triggering HIF1α-Dependent Phenotype Switching. Journal of Investigative Dermatology, 2013, 133, 2436-2443.	0.7	127
133	Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis. PLoS Biology, 2006, 4, e143.	5.6	283
134	Systems biology. Current Biology, 2004, 14, R179-R180.	3.9	18