
Daniel Lozano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/432140/publications.pdf Version: 2024-02-01

DANIEL LOZANO

#	Article	IF	CITATIONS
1	Bone fracture healing: Cell therapy in delayed unions and nonunions. Bone, 2015, 70, 93-101.	2.9	330
2	Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomaterialia, 2015, 15, 200-209.	8.3	164
3	Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomaterialia, 2018, 65, 393-404.	8.3	161
4	Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?. Chemical Society Reviews, 2022, 51, 5365-5451.	38.1	138
5	Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opinion on Drug Delivery, 2019, 16, 415-439.	5.0	124
6	Nanoparticles to Knockdown Osteoporosis-Related Gene and Promote Osteogenic Marker Expression for Osteoporosis Treatment. ACS Nano, 2019, 13, 5451-5464.	14.6	101
7	Role of angiogenesis on bone formation. Histology and Histopathology, 2012, 27, 559-66.	0.7	95
8	Janus Mesoporous Silica Nanoparticles for Dual Targeting of Tumor Cells and Mitochondria. ACS Applied Materials & Interfaces, 2017, 9, 26697-26706.	8.0	93
9	The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials, 2010, 31, 8564-8573.	11.4	87
10	Osteostatin-loaded bioceramics stimulate osteoblastic growth and differentiation. Acta Biomaterialia, 2010, 6, 797-803.	8.3	85
11	GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia. Journal of Endocrinology, 2011, 209, 203-210.	2.6	76
12	Biomaterials against Bone Infection. Advanced Healthcare Materials, 2020, 9, e2000310.	7.6	75
13	A novel visible light responsive nanosystem for cancer treatment. Nanoscale, 2017, 9, 15967-15973.	5.6	72
14	Role of Parathyroid Hormone-Related Protein in the Decreased Osteoblast Function in Diabetes-Related Osteopenia. Endocrinology, 2009, 150, 2027-2035.	2.8	68
15	Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics, 2020, 12, 432.	4.5	68
16	Alterations of the Wnt/βâ€catenin pathway and its target genes for the N†and Câ€terminal domains of parathyroid hormoneâ€related protein in bone from diabetic mice. FEBS Letters, 2010, 584, 3095-3100.	2.8	60
17	Engineered pH-Responsive Mesoporous Carbon Nanoparticles for Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 14946-14957.	8.0	59
18	Comparison of the skeletal effects induced by daily administration of PTHrP (1–36) and PTHrP (107–139) to ovariectomized mice. Journal of Cellular Physiology, 2012, 227, 1752-1760.	4.1	56

DANIEL LOZANO

#	Article	IF	CITATIONS
19	Osteoporosis Remission and New Bone Formation with Mesoporous Silica Nanoparticles. Advanced Science, 2021, 8, e2101107.	11.2	53
20	Osteostatin-loaded onto mesoporous ceramics improves the early phase of bone regeneration in a rabbit osteopenia model. Acta Biomaterialia, 2012, 8, 2317-2323.	8.3	51
21	Self-immolative polymers as novel pH-responsive gate keepers for drug delivery. RSC Advances, 2017, 7, 132-136.	3.6	50
22	Selective topotecan delivery to cancer cells by targeted pH-sensitive mesoporous silica nanoparticles. RSC Advances, 2016, 6, 50923-50932.	3.6	46
23	The Câ€ŧerminal fragment of parathyroid hormoneâ€ŧelated peptide promotes bone formation in diabetic mice with lowâ€ŧurnover osteopaenia. British Journal of Pharmacology, 2011, 162, 1424-1438.	5.4	43
24	Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings. Acta Biomaterialia, 2011, 7, 3555-3562.	8.3	43
25	Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells. Acta Biomaterialia, 2019, 89, 359-371.	8.3	42
26	Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells. Acta Biomaterialia, 2012, 8, 2770-2777.	8.3	40
27	Designing Mesoporous Silica Nanoparticles to Overcome Biological Barriers by Incorporating Targeting and Endosomal Escape. ACS Applied Materials & Interfaces, 2021, 13, 9656-9666.	8.0	39
28	Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormoneâ€related protein in osteoblastic cells. Journal of Cellular Biochemistry, 2013, 114, 1908-1916.	2.6	35
29	Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 405-416.	3.6	32
30	Osteostatin-Coated Porous Titanium Can Improve Early Bone Regeneration of Cortical Bone Defects in Rats. Tissue Engineering - Part A, 2015, 21, 1495-1506.	3.1	32
31	Mesoporous Silica Nanoparticles for Targeting Subcellular Organelles. International Journal of Molecular Sciences, 2020, 21, 9696.	4.1	32
32	Role of the N- and C-terminal Fragments of Parathyroid-Hormone-Related Protein as Putative Therapies to Improve Bone Regeneration Under High Glucocorticoid Treatment. Tissue Engineering - Part A, 2010, 16, 1157-1168.	3.1	31
33	Osteogenic Effect of ZnO-Mesoporous Glasses Loaded with Osteostatin. Nanomaterials, 2018, 8, 592.	4.1	29
34	Parathyroid hormone-related protein (107-111) improves the bone regeneration potential of gelatin–glutaraldehyde biopolymer-coated hydroxyapatite. Acta Biomaterialia, 2014, 10, 3307-3316.	8.3	28
35	Influence of the nanostructure of <scp>F</scp> â€doped TiO ₂ films on osteoblast growth and function. Journal of Biomedical Materials Research - Part A, 2015, 103, 1985-1990.	4.0	27
36	Local delivery of parathyroid hormone-related protein-derived peptides coated onto a hydroxyapatite-based implant enhances bone regeneration in old and diabetic rats. Journal of Biomedical Materials Research - Part A, 2016, 104, 2060-2070.	4.0	25

DANIEL LOZANO

#	Article	IF	CITATIONS
37	Functional Roles of the Nuclear Localization Signal of Parathyroid Hormone-Related Protein (PTHrP) in Osteoblastic Cells. Molecular Endocrinology, 2014, 28, 925-934.	3.7	23
38	Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone and Joint Research, 2018, 7, 58-68.	3.6	23
39	Evaluation of bacterial adherence of clinical isolates of <i>Staphylococcus sp.</i> using a competitive model. Bone and Joint Research, 2017, 6, 315-322.	3.6	22
40	Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice. PLoS ONE, 2014, 9, e87536.	2.5	20
41	The effect of biomimetic mineralization of 3D-printed mesoporous bioglass scaffolds on physical properties and in vitro osteogenicity. Materials Science and Engineering C, 2020, 109, 110572.	7.3	19
42	Amylin exerts osteogenic actions with different efficacy depending on the diabetic status. Molecular and Cellular Endocrinology, 2013, 365, 309-315.	3.2	14
43	ZnO-mesoporous glass scaffolds loaded with osteostatin and mesenchymal cells improve bone healing in a rabbit bone defect. Journal of Materials Science: Materials in Medicine, 2020, 31, 100.	3.6	14
44	Building Block Based Construction of Membrane-Organelle Double Targeted Nanosystem for Two-Drug Delivery. Bioconjugate Chemistry, 2018, 29, 3677-3685.	3.6	12
45	Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics, 2021, 13, 2033.	4.5	11
46	Characterization of Hybrid Bioactive Glass-polyvinyl Alcohol Scaffolds Containing a PTHrP-derived Pentapeptide as Implants for Tissue Engineering Applications. Open Biomedical Engineering Journal, 2014, 8, 20-27.	0.5	10
47	Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 290-299.	3.6	10
48	Features of aminopropyl modified mesoporous silica nanoparticles. Implications on the active targeting capability. Materials Chemistry and Physics, 2018, 220, 260-269.	4.0	9
49	Characterization of skeletal alterations in a model of prematurely aging mice. Age, 2013, 35, 383-393.	3.0	7
50	Diabetes mellitus y pérdida de masa ósea. Revista Española De Enfermedades Metabólicas Óseas, 2007, 16 29-33.	' 0.0	0
51	Comparación de las acciones osteogénicas de la proteÃna relacionada con la parathormona (PTHrP) en modelos de ratón diabético y con déficit del factor de crecimiento similar a la insulina tipo I (IGF-I). Revista De Osteoporosis Y Metabolismo Mineral, 2014, 6, 46-56.	0.3	0
52	The vertebrae of prematurely aging mice as a skeletal model of involutional osteoporosis. Histology and Histopathology, 2013, 28, 1473-81.	0.7	0