
Carel ten Cate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhythmic abilities in humans and non-human animals: a review and recommendations from a methodological perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200335.	4.0	18
2	The multi-dimensional nature of vocal learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200236.	4.0	33
3	Re-evaluating vocal production learning in non-oscine birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200249.	4.0	21
4	Vocal imitations and production learning by Australian musk ducks (<i>Biziura lobata</i>). Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200243.	4.0	10
5	A Comparative Perspective on the Role of Acoustic Cues in Detecting Language Structure. Topics in Cognitive Science, 2020, 12, 859-874.	1.9	9
6	Structured Sequence Learning: Animal Abilities, Cognitive Operations, and Language Evolution. Topics in Cognitive Science, 2020, 12, 828-842.	1.9	18
7	On problem solving and the evolution of cognitive abilities by mate choice: a reply to Camacho-AlpÃzar etÂal. (2020). Animal Behaviour, 2020, 165, e5-e7.	1.9	3
8	Editors' Review and Introduction: Learning Grammatical Structures: Developmental, Crossâ€ S pecies, and Computational Approaches. Topics in Cognitive Science, 2020, 12, 804-814.	1.9	1
9	Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea. Environmental Pollution, 2019, 247, 1143-1157.	7.5	45
10	Rules, rhythm and grouping: auditory pattern perception by birds. Animal Behaviour, 2019, 151, 249-257.	1.9	13
11	Problem-solving males become more attractive to female budgerigars. Science, 2019, 363, 166-167.	12.6	46
12	Zebra finches (Taeniopygia guttata) can categorize vowel-like sounds on both the fundamental frequency ("pitchâ€) and spectral envelope Journal of Comparative Psychology (Washington, D C:) Tj ETQq	0 000 ജgBT	/Overlock 10
13	The comparative study of grammar learning mechanisms: birds as models. Current Opinion in Behavioral Sciences, 2018, 21, 13-18.	3.9	17
14	Assessing the uniqueness of language: Animal grammatical abilities take center stage. Psychonomic Bulletin and Review, 2017, 24, 91-96.	2.8	29
15	Spontaneous generalization of abstract multimodal patterns in young domestic chicks. Animal Cognition, 2017, 20, 521-529.	1.8	44
16	Selective auditory grouping by zebra finches: testing the iambic–trochaic law. Animal Cognition, 2017, 20, 665-675.	1.8	17
17	Bridging the gap: Learning of acoustic nonadjacent dependencies by a songbird Journal of Experimental Psychology Animal Learning and Cognition, 2017, 43, 295-302.	0.5	16
18	Can Birds Perceive Rhythmic Patterns? A Review and Experiments on a Songbird and a Parrot Species. Frontiers in Psychology, 2016, 7, 730.	2.1	40

#	Article	IF	CITATIONS
19	Zebra Finch Song Phonology and Syntactical Structure across Populations and Continents—A Computational Comparison. Frontiers in Psychology, 2016, 7, 980.	2.1	38
20	Auditory discrimination learning in zebra finches: effects of sex, early life conditions and stimulus characteristics. Animal Behaviour, 2016, 116, 99-112.	1.9	23
21	Budgerigars and zebra finches differ in how they generalize in an artificial grammar learning experiment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3977-84.	7.1	60
22	Noise Impact on European Sea Bass Behavior: Temporal Structure Matters. Advances in Experimental Medicine and Biology, 2016, 875, 763-766.	1.6	1
23	Zebra finches are able to learn affixation-like patterns. Animal Cognition, 2016, 19, 65-73.	1.8	12
24	Mapping Underwater Sound in the Dutch Part of the North Sea. Advances in Experimental Medicine and Biology, 2016, 875, 1001-1006.	1.6	7
25	A general auditory bias for handling speaker variability in speech? Evidence in humans and songbirds. Frontiers in Psychology, 2015, 6, 1243.	2.1	9
26	Searching for the origins of musicality across species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140094.	4.0	73
27	Without it no music: cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140088.	4.0	170
28	Zebra finches can use positional and transitional cues to distinguish vocal element strings. Behavioural Processes, 2015, 117, 29-34.	1.1	34
29	The perception of regularity in an isochronous stimulus in zebra finches (Taeniopygia guttata) and humans. Behavioural Processes, 2015, 115, 37-45.	1.1	23
30	Artificial grammar learning in zebra finches and human adults: XYX versus XXY. Animal Cognition, 2015, 18, 151-164.	1.8	44
31	Pauses enhance chunk recognition in song element strings by zebra finches. Animal Cognition, 2015, 18, 867-874.	1.8	18
32	Zebra finches are sensitive to prosodic features of human speech. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140480.	2.6	33
33	On the phonetic and syntactic processing abilities of birds: From songs to speech and artificial grammars. Current Opinion in Neurobiology, 2014, 28, 157-164.	4.2	26
34	The interplay of within-species perceptual predispositions and experience during song ontogeny in zebra finches (Taeniopygia guttata). Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141860.	2.6	10
35	Revisiting vocal perception in non-human animals: a review of vowel discrimination, speaker voice recognition, and speaker normalization. Frontiers in Psychology, 2014, 5, 1543.	2.1	24
36	ARTIFICIAL GRAMMAR LEARNING IN INFANTS, ADULTS, AND SONGBIRDS: WHAT IS SHARED, WHAT IS LEARNED?. , 2014, , .		0

3

#	Article	IF	CITATIONS
37	ZEBRA FINCHES CAN LEARN TO RECOGNIZE AFFIXATIONS. , 2014, , .		1
38	PROSODIC CUE WEIGHTING BY ZEBRA FINCHES. , 2014, , .		0
39	Rule learning by zebra finches in an artificial grammar learning task: which rule?. Animal Cognition, 2013, 16, 165-175.	1.8	54
40	The Progressive Loss of Syntactical Structure in Bird Song along an Island Colonization Chain. Current Biology, 2013, 23, 1896-1901.	3.9	72
41	Acoustic communication in plants: do the woods really sing?. Behavioral Ecology, 2013, 24, 799-800.	2.2	15
42	The impact of learned mating traits on speciation is not yet clear: response to Kawecki. Trends in Ecology and Evolution, 2013, 28, 69-70.	8.7	4
43	Vocal tract articulation revisited: the case of the monk parakeet. Journal of Experimental Biology, 2012, 215, 85-92.	1.7	24
44	Revisiting the syntactic abilities of non-human animals: natural vocalizations and artificial grammar learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1984-1994.	4.0	125
45	The impact of learning on sexual selection and speciation. Trends in Ecology and Evolution, 2012, 27, 511-519.	8.7	307
46	Zebra finches and Dutch adults exhibit the same cue weighting bias in vowel perception. Animal Cognition, 2012, 15, 155-161.	1.8	31
47	Low-frequency songs lose their potency in noisy urban conditions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14549-14554.	7.1	234
48	Vocal Tract Articulation in Zebra Finches. PLoS ONE, 2010, 5, e11923.	2.5	45
49	Threat signaling in female song—evidence from playbacks in a sex-role reversed bird species. Behavioral Ecology, 2010, 21, 1147-1155.	2.2	31
50	Zebra finches exhibit speaker-independent phonetic perception of human speech. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1003-1009.	2.6	43
51	Sounds of male Lake Victoria cichlids vary within and between species and affect female mate preferences. Behavioral Ecology, 2010, 21, 548-555.	2.2	74
52	A noisy spring: the impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution, 2010, 25, 419-427.	8.7	718
53	Unidirectional Hybridization and Introgression in an Avian Contact Zone: Evidence from Genetic Markers, Morphology, and Comparisons with Laboratory-Raised F1Hybrids. Auk, 2010, 127, 605-616.	1.4	16
54	SIMPLE RULES CAN EXPLAIN DISCRIMINATION OF PUTATIVE RECURSIVE SYNTACTIC STRUCTURES BY SONGBIRDS: A CASE STUDY ON ZEBRA FINCHES. , 2010, , .		0

#	Article	IF	CITATIONS
55	Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20538-20543.	7.1	159
56	Tinbergen revisited: a replication and extension of experiments on the beak colour preferences of herring gull chicks. Animal Behaviour, 2009, 77, 795-802.	1.9	16
57	Niko Tinbergen and the red patch on the herring gull's beak. Animal Behaviour, 2009, 77, 785-794.	1.9	17
58	Females alter their song when challenged in a sex-role reversed bird species. Behavioral Ecology and Sociobiology, 2009, 64, 193-204.	1.4	67
59	Crossâ€fostering Does Not Influence the Mate Preferences and Territorial Behaviour of Males in Lake Victoria Cichlids. Ethology, 2009, 115, 39-48.	1.1	14
60	Females learn from mothers and males learn from others. The effect of mother and siblings on the development of female mate preferences and male aggression biases in Lake Victoria cichlids, genus Mbipia. Behavioral Ecology and Sociobiology, 2008, 62, 1359-1368.	1.4	59
61	Song discrimination learning in zebra finches induces highly divergent responses to novel songs. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 295-301.	2.6	33
62	Hybrid vocalizations are effective within, but not outside, an avian hybrid zone. Behavioral Ecology, 2007, 18, 608-614.	2.2	26
63	Biases in signal evolution: learning makes a difference. Trends in Ecology and Evolution, 2007, 22, 380-387.	8.7	157
64	Early learning influences species assortative mating preferences in Lake Victoria cichlid fish. Biology Letters, 2007, 3, 134-136.	2.3	157
65	Forelimb-hindlimb developmental timing changes across tetrapod phylogeny. BMC Evolutionary Biology, 2007, 7, 182.	3.2	93
66	Within-song complexity in a songbird is meaningful to both male and female receivers. Animal Behaviour, 2006, 71, 1289-1296.	1.9	60
67	Sexual Imprinting Can Induce Sexual Preferences for Exaggerated Parental Traits. Current Biology, 2006, 16, 1128-1132.	3.9	86
68	Neuronal activation related to auditory perception in the brain of a non-songbird, the ring dove. Journal of Comparative Neurology, 2005, 488, 342-351.	1.6	29
69	Repeated decrease in vocal repertoire size in Streptopelia doves. Animal Behaviour, 2004, 67, 549-557.	1.9	24
70	Perceptual salience of acoustic differences between conspecific and allospecific vocalizations in African collared-doves. Animal Behaviour, 2003, 65, 605-614.	1.9	25
71	Mechanisms of frequency and amplitude modulation in ring dove song. Journal of Experimental Biology, 2003, 206, 1833-1843.	1.7	64
72	Pure-tone birdsong by resonance filtering of harmonic overtones. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7372-7376.	7.1	68

#	Article	IF	CITATIONS
73	Vocal signals, isolation and hybridization in the vinaceous dove (Streptopelia vinacea) and the ring-necked dove (S. capicola). Behavioral Ecology and Sociobiology, 2002, 51, 378-385.	1.4	34
74	Diverge or merge? The effect of sympatric occurrence on the territorial vocalizations of the vinaceous dove Streptopelia vinacea and the ring-necked dove S. capicola. Journal of Avian Biology, 2002, 33, 150-158.	1.2	43
75	Posing as Professor: Laterality in Posing Orientation for Portraits of Scientists. Journal of Nonverbal Behavior, 2002, 26, 175-192.	1.0	29
76	Male bill colour and competition in zebra finches. Behavioural Processes, 2001, 55, 119-124.	1.1	13
77	A Molecular Phylogeny of the Dove Genera Streptopelia and Columba. Auk, 2001, 118, 874-887.	1.4	69
78	Response to interspecific vocalizations is affected by degree of phylogenetic relatedness in Streptopelia doves. Animal Behaviour, 2001, 61, 239-247.	1.9	77
79	Perceptual relevance of species-specific differences in acoustic signal structure in Streptopelia doves. Animal Behaviour, 2001, 62, 511-518.	1.9	27
80	VARIATIONS IN ZEBRA FINCH SONG COPYING: AN EXAMINATION OF THE RELATIONSHIP WITH TUTOR SONG QUALITY AND PUPIL BEHAVIOUR. Behaviour, 2000, 137, 1377-1389.	0.8	14
81	How learning mechanisms might affect evolutionary processes. Trends in Ecology and Evolution, 2000, 15, 179-181.	8.7	37
82	Collared Dove Responses to Playback: Slaves to the Rhythm. Ethology, 1999, 105, 377-391.	1.1	31
83	Song learning from playback in zebra finches: is there an effect of operant contingency?. Animal Behaviour, 1999, 57, 837-845.	1.9	66
84	Sexual Imprinting and Evolutionary Processes in Birds: A Reassessment. Advances in the Study of Behavior, 1999, 28, 1-31.	1.6	228
85	ACOUSTIC DIFFERENTIATION IN THE COO-VOCALIZATIONS OF THE COLLARED DOVE. Bioacoustics, 1999, 10, 1-17.	1.7	7
86	Do stimulus-stimulus contingencies affect song learning in zebra finches (Taeniopygia guttata)?. Journal of Comparative Psychology (Washington, D C: 1983), 1999, 113, 235-242.	0.5	14
87	Perceptual tuning to frequency characteristics of territorial signals in collared doves. Animal Behaviour, 1998, 56, 847-857.	1.9	32
88	Abnormal Behavior in Caged Birds Kept as Pets. Journal of Applied Animal Welfare Science, 1998, 1, 51-64.	1.0	52
89	Do Contingencies with Tutor Behaviour Influence Song Learning in Zebra Finches?. Behaviour, 1998, 135, 599-614.	0.8	16
90	Stronger territorial responses to frequency modulated coos in collared doves. Animal Behaviour, 1997, 54, 955-965.	1.9	34

#	Article	IF	CITATIONS
91	Dove coos and flashed lights: Interruptibility of "song" in a nonsongbird Journal of Comparative Psychology (Washington, D C: 1983), 1996, 110, 267-275.	0.5	22
92	Early experience and plasticity of song in adult male zebra finches (Taeniopygia guttata) Journal of Comparative Psychology (Washington, D C: 1983), 1996, 110, 354-369.	0.5	95
93	Conference Proceedings. Animal Biology, 1992, 43, 1.	0.4	3
94	Behaviour-contingent exposure to taped song and zebra finch song learning. Animal Behaviour, 1991, 42, 857-859.	1.9	42
95	Population lateralization in zebra finch courtship: a re-assessment. Animal Behaviour, 1991, 41, 900-901.	1.9	4
96	Song learning in zebra finches: how are elements from two tutors integrated?. Animal Behaviour, 1991, 42, 150-152.	1.9	25
97	Stimulus representation: A subprocess of imprinting and conditioning Journal of Comparative Psychology (Washington, D C: 1983), 1991, 105, 307-317.	0.5	30
98	The influence of testing conditions on sexual preferences in double imprinted zebra finch males. Animal Behaviour, 1989, 37, 694-696.	1.9	3
99	Sexual imprinting and a preference for â€~supernormal' partners in Japanese quail. Animal Behaviour, 1989, 38, 356-358.	1.9	49
100	Sexual preferences in zebra finch males raised by two species: II. The internal representation resulting from double imprinting. Animal Behaviour, 1987, 35, 321-330.	1.9	29
101	Listening behaviour and song learning in zebra finches. Animal Behaviour, 1986, 34, 1267-1268.	1.9	20
102	Sexual preferences in zebra finch (Taeniopygia guttata) males raised by two species (Lonchura striata) Tj ETQqO (Washington, D C: 1983), 1986, 100, 248-252.	0 0 rgBT 0.5	Overlock 10 T 18
103	Does behavior contingent stimulus movement enhance filial imprinting in Japanese quail?. Developmental Psychobiology, 1986, 19, 607-614.	1.6	29
104	Directed song of male zebra finches as a predictor of subsequent intra- and interspecific social behaviour and pair formation. Behavioural Processes, 1985, 10, 369-374.	1.1	29
105	On sex differences in sexual imprinting. Animal Behaviour, 1985, 33, 1310-1317.	1.9	59
106	The Development of Mate Choice in Zebra Finch Females. Behaviour, 1984, 90, 125-150.	0.8	90
107	The influence of differences in social experience on the development of species recognition in zebra finch males. Animal Behaviour, 1984, 32, 852-860.	1.9	55