
Andrzej S Pitek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321326/publications.pdf Version: 2024-02-01

ANDDZELS DITER

#	Article	IF	CITATIONS
1	Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnology, 2013, 8, 137-143.	31.5	1,516
2	Reversible <i>versus</i> Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano, 2012, 6, 2532-2541.	14.6	431
3	Virus-Based Nanoparticles as Versatile Nanomachines. Annual Review of Virology, 2015, 2, 379-401.	6.7	136
4	Formation and Characterization of the Nanoparticle–Protein Corona. Methods in Molecular Biology, 2013, 1025, 137-155.	0.9	111
5	POxylation as an alternative stealth coating for biomedical applications. European Polymer Journal, 2017, 88, 679-688.	5.4	81
6	Transferrin Coated Nanoparticles: Study of the Bionano Interface in Human Plasma. PLoS ONE, 2012, 7, e40685.	2.5	80
7	Serum albumin â€~camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials, 2016, 89, 89-97.	11.4	78
8	The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates. Small, 2016, 12, 1758-1769.	10.0	72
9	Tuning of nanoparticle biological functionality through controlled surface chemistry and characterisation at the bioconjugated nanoparticle surface. Scientific Reports, 2015, 5, 17040.	3.3	53
10	Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials. Nanoscale, 2015, 7, 15268-15276.	5.6	52
11	Cancer Theranostic Applications of Albumin-Coated Tobacco Mosaic Virus Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 39468-39477.	8.0	45
12	Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies. Molecular Pharmaceutics, 2017, 14, 3815-3823.	4.6	41
13	The <i>in vivo</i> fates of plant viral nanoparticles camouflaged using self-proteins: overcoming immune recognition. Journal of Materials Chemistry B, 2018, 6, 2204-2216.	5.8	37
14	Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. Nanoscale, 2018, 10, 16547-16555.	5.6	30
15	Featured Article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Experimental Biology and Medicine, 2017, 242, 1405-1411.	2.4	25
16	Cryo-electron tomography investigation of serum albumin-camouflaged tobacco mosaic virus nanoparticles. Nanoscale, 2017, 9, 3408-3415.	5.6	19
17	Nanomedicine: The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates (Small 13/2016). Small, 2016, 12, 1682-1682.	10.0	4
18	Interactions Between Plant Viral Nanoparticles (VNPs) and Blood Plasma Proteins, and Their Impact on theÂVNP In Vivo Fates. Methods in Molecular Biology, 2018, 1776, 591-608.	0.9	2

#	Article	IF	CITATIONS
19	Characterization of the Shielding Properties of Serum Albumin on a Plant Viral Nanoparticle. Microscopy and Microanalysis, 2016, 22, 1084-1085.	0.4	0