
David Danielpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4320603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia represses early responses of prostate and renal cancer cells to YM155 independent of HIF-1α and HIF-2α. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100076.	3.6	1
2	Jagged-1 is induced by mTOR inhibitors in renal cancer cells through an Akt/ALK5/Smad4-dependent mechanism. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100117.	3.6	5
3	The transcription co-factor JAB1/COPS5, serves as a potential oncogenic hub of human chondrosarcoma cells. American Journal of Cancer Research, 2021, 11, 5063-5075.	1.4	0
4	The crucial p53-dependent oncogenic role of JAB1 in osteosarcoma in vivo. Oncogene, 2020, 39, 4581-4591.	5.9	22
5	Early Cellular Responses of Prostate Carcinoma Cells to Sepantronium Bromide (YM155) Involve Suppression of mTORC1 by AMPK. Scientific Reports, 2019, 9, 11541.	3.3	9
6	JAB1/COPS5 is a putative oncogene that controls critical oncoproteins deregulated in prostate cancer. Biochemical and Biophysical Research Communications, 2019, 518, 374-380.	2.1	10
7	Neuroendocrine prostate carcinoma cells originate from the p63-expressing basal cells but not the pre-existing adenocarcinoma cells in mice. Cell Research, 2019, 29, 420-422.	12.0	13
8	HMBA is a putative HSP70 activator stimulating HEXIM1 expression that is down-regulated by estrogen. Journal of Steroid Biochemistry and Molecular Biology, 2017, 168, 91-101.	2.5	4
9	A Signaling Network Controlling Androgenic Repression of c-Fos Protein in Prostate Adenocarcinoma Cells. Journal of Biological Chemistry, 2016, 291, 5512-5526.	3.4	20
10	HEXIM1 plays a critical role in the inhibition of the androgen receptor by anti-androgens. Biochemical Journal, 2014, 462, 315-327.	3.7	18
11	Adaptive cell plasticity in autocrine TGFβ2 coordinated transcriptome-metabolome reprogramming of EGFR-mutant lung cancer in precision therapy escape Journal of Clinical Oncology, 2014, 32, e19043-e19043.	1.6	0
12	Critical Role of a Survivin/TGF-β/mTORC1 Axis in IGF-I-Mediated Growth of Prostate Epithelial Cells. PLoS ONE, 2013, 8, e61896.	2.5	28
13	Androgenic Control of Transforming Growth Factor-β Signaling in Prostate Epithelial Cells through Transcriptional Suppression of Transforming Growth Factor-β Receptor II. Cancer Research, 2008, 68, 8173-8182.	0.9	46
14	Cross-talk between IGF-I and TGF-β signaling pathways. Cytokine and Growth Factor Reviews, 2006, 17, 59-74.	7.2	80
15	Novel roles of Akt and mTOR in suppressing TGF-β/ALK5-mediated Smad3 activation. EMBO Journal, 2006, 25, 58-69.	7.8	169
16	Functions and regulation of transforming growth factor-beta (TGF-β) in the prostate. European Journal of Cancer, 2005, 41, 846-857.	2.8	110
17	Regulation of trespin expression by modulators of cell growth, differentiation, and apoptosis in prostatic epithelial cells. Experimental Cell Research, 2003, 284, 301-313.	2.6	13
18	The Androgen Receptor Represses Transforming Growth Factor-Î ² Signaling through Interaction with Smad3. Journal of Biological Chemistry, 2002, 277, 1240-1248.	3.4	178

#	Article	IF	CITATIONS
19	A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biology, 2000, 2, 915-921.	10.3	226
20	The role of transforming growth factor-β1, -β2, and -β3 in androgen-responsive growth of NRP-152 rat		45

prostatic epithelial cells. , 1998, 175, 184-192.