Rusen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4320195/publications.pdf

Version: 2024-02-01

		36203	18606	
135	14,500	51	119	
papers	citations	h-index	g-index	
138	138	138	14831	
130	130	130	14031	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Self-powered nanowire devices. Nature Nanotechnology, 2010, 5, 366-373.	15.6	1,462
2	Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science, 2004, 303, 1348-1351.	6.0	1,383
3	Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4, 34-39.	15.6	859
4	Flexible Piezotronic Strain Sensor. Nano Letters, 2008, 8, 3035-3040.	4.5	742
5	Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Letters, 2010, 10, 3151-3155.	4.5	713
6	Lithiated MoO ₃ Nanobelts with Greatly Improved Performance for Lithium Batteries. Advanced Materials, 2007, 19, 3712-3716.	11.1	545
7	Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces. Advanced Functional Materials, 2004, 14, 943-956.	7.8	537
8	Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator. Nano Letters, 2009, 9, 1201-1205.	4.5	441
9	Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect. Nano Letters, 2015, 15, 2372-2379.	4.5	428
10	Muscleâ€Driven In Vivo Nanogenerator. Advanced Materials, 2010, 22, 2534-2537.	11.1	388
11	Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy. ACS Nano, 2010, 4, 3647-3652.	7.3	383
12	Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy, 2013, 2, 604-608.	8.2	369
13	Cellular Level Biocompatibility and Biosafety of ZnO Nanowires. Journal of Physical Chemistry C, 2008, 112, 20114-20117.	1.5	288
14	Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires. Nano Letters, 2008, 8, 3973-3977.	4.5	279
15	Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nature Communications, 2016, 7, 13566.	5.8	233
16	Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Materials Science and Engineering Reports, 2010, 70, 320-329.	14.8	223
17	Growth and field-emission property of tungsten oxide nanotip arrays. Applied Physics Letters, 2005, 87, 223108.	1.5	219
18	Ordered Nanowire Array Blue/Nearâ€UV Light Emitting Diodes. Advanced Materials, 2010, 22, 4749-4753.	11.1	206

#	Article	IF	Citations
19	Aligned AlN Nanorods with Multi-tipped Surfacesâ€"Growth, Field-Emission, and Cathodoluminescence Properties. Advanced Materials, 2006, 18, 650-654.	11.1	183
20	Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. Journal of Materials Chemistry, 2009, 19, 9260.	6.7	181
21	Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy, 2019, 59, 84-90.	8.2	171
22	Environmental effects on nanogenerators. Nano Energy, 2015, 14, 49-61.	8.2	155
23	Temperature dependence of the Raman spectra of single-wall carbon nanotubes. Applied Physics Letters, 2000, 76, 2053-2055.	1.5	154
24	Deformation-Free Single-Crystal Nanohelixes of Polar Nanowires. Nano Letters, 2004, 4, 1309-1312.	4.5	146
25	Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes. Nano Letters, 2008, 8, 4027-4032.	4.5	146
26	Aspect Ratio Dependence of the Elastic Properties of ZnO Nanobelts. Nano Letters, 2007, 7, 1314-1317.	4.5	130
27	Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate. Journal of Physical Chemistry C, 2008, 112, 18734-18736.	1.5	122
28	Springs, Rings, and Spirals of Rutile-Structured Tin Oxide Nanobelts. Journal of the American Chemical Society, 2006, 128, 1466-1467.	6.6	121
29	Mechanism and Optimization of pH Sensing Using SnO ₂ Nanobelt Field Effect Transistors. Nano Letters, 2008, 8, 4179-4184.	4.5	119
30	Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 2009, 94, .	1.5	114
31	Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction. Journal of the American Chemical Society, 2007, 129, 15444-15445.	6.6	104
32	Single-Crystalline Branched Zinc Phosphide Nanostructures: Â Synthesis, Properties, and Optoelectronic Devices. Nano Letters, 2007, 7, 269-275.	4.5	104
33	Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sensors and Actuators A: Physical, 2014, 205, 164-169.	2.0	93
34	Enhanced photoelectrochemical hydrogen production efficiency of MoS ₂ -Si heterojunction. Optics Express, 2019, 27, A352.	1.7	91
35	Bioinspired Stable and Photoluminescent Assemblies for Power Generation. Advanced Materials, 2019, 31, e1807481.	11.1	82
36	Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface. Chemical Physics Letters, 2006, 417, 358-362.	1.2	80

#	Article	IF	Citations
37	Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors. Applied Physics Letters, 2006, 89, 093114.	1.5	79
38	Strategies for effectively harvesting wind energy based on triboelectric nanogenerators. Nano Energy, 2022, 100, 107522.	8.2	77
39	Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology, 2012, 23, 055604.	1.3	74
40	A spring-assisted hybrid triboelectric–electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system. Nanoscale, 2018, 10, 14747-14754.	2.8	73
41	Nonlayered Two-Dimensional Defective Semiconductor γ-Ga ₂ S ₃ toward Broadband Photodetection. ACS Nano, 2019, 13, 6297-6307.	7.3	72
42	Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy, 2018, 51, 317-323.	8.2	71
43	Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nature Communications, 2021, 12, 2634.	5.8	68
44	Synthesis of Ba-doped CeO ₂ nanowires and their application as humidity sensors. Nanotechnology, 2007, 18, 465504.	1.3	66
45	Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. Advanced Materials, 2022, 34, e2108491.	11.1	64
46	Two-dimensional non-layered materials. Materials Today Nano, 2019, 8, 100051.	2.3	62
47	Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16.	8.3	62
48	Piezotronic Effect: An Emerging Mechanism for Sensing Applications. Sensors, 2015, 15, 22914-22940.	2.1	61
49	Triboelectric–Thermoelectric Hybrid Nanogenerator for Harvesting Energy from Ambient Environments. Advanced Materials Technologies, 2018, 3, 1800166.	3.0	61
50	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	7.3	61
51	Unique Properties of Selectively Formed Zirconia Nanostructures. Advanced Materials, 2006, 18, 664-667.	11.1	59
52	Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS Nano, 2020, 14, 7025-7037.	7.3	59
53	Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO ₂ into CO. ACS Applied Materials & Diterfaces, 2021, 13, 40629-40637.	4.0	51
54	Guest Molecule-Mediated Energy Harvesting in a Conformationally Sensitive Peptide–Metal Organic Framework. Journal of the American Chemical Society, 2022, 144, 3468-3476.	6.6	49

#	Article	IF	CITATIONS
55	Epitaxial growth of vertically aligned piezoelectric diphenylalanine peptide microrods with uniform polarization. Nano Energy, 2015, 17, 323-329.	8.2	48
56	Rigid Tightly Packed Amino Acid Crystals as Functional Supramolecular Materials. ACS Nano, 2019, 13, 14477-14485.	7.3	48
57	Piezoelectric peptide-based nanogenerator enhanced by single-electrode triboelectric nanogenerator. APL Materials, 2017, 5, .	2.2	44
58	Design and application of piezoelectric biomaterials. Journal Physics D: Applied Physics, 2019, 52, 194002.	1.3	44
59	Piezoelectric Peptide and Metabolite Materials. Research, 2019, 2019, 9025939.	2.8	44
60	Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting. ACS Applied Materials & Energy Harvesting.	4.0	43
61	Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases. Materials Chemistry and Physics, 2012, 137, 372-380.	2.0	42
62	Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting. Nano Energy, 2021, 83, 105783.	8.2	42
63	Nanowireâ^'Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies. Journal of Physical Chemistry Letters, 2010, 1, 2929-2935.	2.1	41
64	Accelerated charge transfer in water-layered peptide assemblies. Energy and Environmental Science, 2020, 13, 96-101.	15.6	39
65	A whirligig-inspired intermittent-contact triboelectric nanogenerator for efficient low-frequency vibration energy harvesting. Nano Energy, 2021, 90, 106576.	8.2	39
66	SiC-Shell Nanostructures Fabricated by Replicating ZnO Nano-objects: A Technique for Producing Hollow Nanostructures of Desired Shape. Small, 2006, 2, 1344-1347.	5.2	38
67	Nondestructive <i>In Situ</i> Identification of Crystal Orientation of Anisotropic ZnO Nanostructures. ACS Nano, 2009, 3, 2593-2600.	7.3	38
68	Fabric-Based Triboelectric Nanogenerators. Research, 2019, 2019, 1091632.	2.8	36
69	Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods. Solid State Communications, 2005, 134, 741-745.	0.9	35
70	Optical switches based on CdS single nanowire. Materials Research Bulletin, 2010, 45, 1476-1480.	2.7	31
71	Uniform Zinc Oxide Nanowire Arrays Grown on Nonepitaxial Surface with General Orientation Control. Nano Letters, 2013, 13, 5171-5176.	4.5	31
72	Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology, 2014, 25, 345702.	1.3	30

#	Article	IF	CITATIONS
73	Lead acetate produced from lead-acid battery for efficient perovskite solar cells. Nano Energy, 2020, 69, 104380.	8.2	30
74	Large-Grained All-Inorganic Bismuth-Based Perovskites with Narrow Band Gap via Lewis Acid–Base Adduct Approach. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 43876-43884.	4.0	30
75	Fabrication and application of biocompatible nanogenerators. IScience, 2021, 24, 102274.	1.9	28
76	Diphenylalanine-based degradable piezoelectric nanogenerators enabled by polylactic acid polymer-assisted transfer. Nano Energy, 2021, 88, 106229.	8.2	27
77	In-situ annealed "M-scheme―MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction. Nano Energy, 2021, 90, 106532.	8.2	27
78	Perovskite Passivation Strategies for Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, .	3.1	23
79	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
80	Multi-functional lanthanide coordination polymers for multi-modal detection of nitroaromatics and trace water in organic solvents. Journal of Colloid and Interface Science, 2021, 598, 474-482.	5.0	22
81	Peptide Coassembly to Enhance Piezoelectricity for Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6538-6546.	4.0	22
82	Growth of self-assembled ZnO nanowire arrays. Philosophical Magazine, 2007, 87, 2097-2104.	0.7	20
83	Trapezoidal Cantilever-Structure Triboelectric Nanogenerator Integrated with a Power Management Module for Low-Frequency Vibration Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 5497-5505.	4.0	20
84	Morphology and phase selective synthesis of CuxO ($x=1,2$) nanostructures and their catalytic degradation activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 113-117.	1.7	19
85	Core-Shell Fiber-Based 2D Woven Triboelectric Nanogenerator for Effective Motion Energy Harvesting. Nanoscale Research Letters, 2019, 14, 311.	3.1	19
86	P-GaN-substrate sprouted giant pure negative electrocaloric effect in Mn-doped Pb(Zr0.3Ti0.7)O3 thin film with a super-broad operational temperature range. Nano Energy, 2021, 86, 106059.	8.2	18
87	Thiadiazole-functionalized metal-organic frameworks multifunction-architectonics for dual-target sensing of ethylamine and gossypol. Chemical Engineering Journal, 2022, 441, 136049.	6.6	18
88	Preparation of WO3 network squares for ultrasensitive photodetectors. Journal of Alloys and Compounds, 2011, 509, L255-L261.	2.8	15
89	Piezoelectric Potential in Single-Crystalline ZnO Nanohelices Based on Finite Element Analysis. Nanomaterials, 2017, 7, 430.	1.9	15
90	Rapid photoresponse of single-crystalline selenium nanobelts. Solid State Communications, 2008, 148, 145-147.	0.9	13

#	Article	IF	CITATIONS
91	Diffusion-Controlled Self-Assembly and Dendrite Formation in Silver-Seeded Anatase Titania Nanospheres. Journal of Physical Chemistry C, 2008, 112, 5439-5446.	1.5	13
92	Scalable alignment and transfer of nanowires in a spinning Langmuir film. Nanoscale, 2014, 6, 11976-11980.	2.8	13
93	High Output Piezoelectric Nanogenerator: Development and Application. Science of Advanced Materials, 2012, 4, 798-804.	0.1	13
94	Promoted photocarriers separation by straining in 2D/2D van der Waals heterostructures for high-efficiency visible-light photocatalysis. Materials Today Physics, 2022, 22, 100600.	2.9	13
95	Ordered zinc-vacancy induced Zn0.750x nanophase structure. Solid State Communications, 2006, 138, 390-394.	0.9	12
96	Size dependence of the mechanical properties of ZnO nanobelts. Philosophical Magazine, 2007, 87, 2135-2141.	0.7	11
97	Single Nano-Sized Metal–Organic Framework for Bio-Nanoarchitectonics with In Vivo Fluorescence Imaging and Chemo-Photodynamic Therapy. Nanomaterials, 2022, 12, 287.	1.9	11
98	Mechanical transfer of ZnO nanowires for a flexible and conformal piezotronic strain sensor. Semiconductor Science and Technology, 2017, 32, 074004.	1.0	10
99	Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection. Nanoscale Advances, 2019, 1, 4909-4914.	2.2	9
100	Spin Ordering Induced Broadband Photodetection Based on Twoâ€Dimensional Magnetic Semiconductor <i>α</i> â€MnSe. Advanced Science, 2022, 9, .	5.6	9
101	Directâ€eurrent nanogenerator based on ZnO nanotube arrays. Physica Status Solidi - Rapid Research Letters, 2011, 5, 77-79.	1.2	8
102	Interdiffusion Stomatal Movement in Efficient Multiple-Cation-Based Perovskite Solar Cells. ACS Applied Materials & District Solar Cells. ACS Applied Materials	4.0	8
103	Highly stable metal-organic framework UiO-66-NH ₂ for high-performance triboelectric nanogenerators. Nanotechnology, 2022, 33, 065402.	1.3	8
104	Introducing Spin Polarization into Mixedâ€Dimensional Van der Waals Heterostructures for <scp>Highâ€Efficiency Visibleâ€Light</scp> Photocatalysis. Energy and Environmental Materials, 2023, 6, .	7.3	8
105	Synthesis of BaCO ₃ Nanowires and Their Humidity Sensitive Property. Journal of Nanoscience and Nanotechnology, 2011, 11, 10706-10709.	0.9	7
106	High dielectric tunability with high thermal stability of the (111) highly oriented 0.85Pb(Mg1/3Nb2/3)-0.15PbTiO3 thin film prepared by a sol-gel method. Journal of the European Ceramic Society, 2021, 41, 6482-6489.	2.8	7
107	One-Dimensional Nanostructures by Pulsed Laser Ablation. Science of Advanced Materials, 2012, 4, 401-406.	0.1	7
108	Increased solar absorption and promoted photocarrier separation in atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Chemical Engineering Journal, 2022, 431, 133219.	6.6	7

#	Article	IF	CITATIONS
109	Realizing strong visible-light absorption band for 2D crystalline carbon nitride sheets induced by extending π-conjugation and introducing cyano groups. Materials Today Physics, 2022, 23, 100634.	2.9	7
110	A strategy for iron oxide nanoparticles to adhere to the neuronal membrane in the substantia nigra of mice. Journal of Materials Chemistry B, 2020, 8, 758-766.	2.9	6
111	Fabrication of two-dimensional 3d transition metal oxides through template assisted cations hydrolysis method. Chemical Engineering Journal, 2021, 415, 129044.	6.6	6
112	Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing. Mechanical Engineering Series, 2018, , .	0.1	5
113	Insight into the Role of H ₂ in WS ₂ Growth by Chemical Vapor Deposition. ACS Applied Electronic Materials, 2021, 3, 5138-5146.	2.0	5
114	Sulfide synergistic electrochemical activity for high-performance alkaline rechargeable microbatteries. Journal of Materials Science, 2021, 56, 629-639.	1.7	4
115	Characterization of the inhomogeneity of Pt/CeO \times /Pt resistive switching devices prepared by magnetron sputtering. Nanotechnology, 2021, 32, 145710.	1.3	4
116	EDTA-mimicking amino acid–metal ion coordination for multifunctional packings. Journal of Materials Chemistry A, 2021, 9, 20385-20394.	5.2	4
117	Control system of powered wheelchairs based on tongue motion detection. , 2016, , .		3
118	Coâ€Assembly Induced Solidâ€State Stacking Transformation in Amino Acidâ€Based Crystals with Enhanced Physical Properties. Angewandte Chemie, 2022, 134, .	1.6	3
119	High-mass-density nanographene frameworks for compact capacitive energy storage. Journal of Power Sources, 2022, 529, 231266.	4.0	3
120	Degradation and nano-patterning of ferroelectric P(VDF-TrFE) thin films with electron irradiation. RSC Advances, 2015, 5, 106700-106705.	1.7	2
121	Piezotronic Effect in a Zinc Oxide Nanowire. Mechanical Engineering Series, 2018, , 39-52.	0.1	2
122	Design of Intelligent Street Lamp Control System Based on Wireless Network. , 2018, , .		2
123	Introduction to the Piezotronic Effect and Sensing Applications. Mechanical Engineering Series, 2018, , $1\text{-}4$.	0.1	1
124	Growth of Uniform Nanowires with Orientation Control. Mechanical Engineering Series, 2018, , 5-20.	0.1	1
125	A Special Issue on Nanomaterials by Laser Processing. Science of Advanced Materials, 2012, 4, 365-367.	0.1	1
126	Ultra-Sensitive Strain/Stress Sensing. Mechanical Engineering Series, 2018, , 53-62.	0.1	1

#	Article	IF	CITATIONS
127	Synthesis of BaO nanowires and their humidity sensitive property. , 2010, , .		O
128	Nanowires for Piezoelectric Nanogenerators. RSC Smart Materials, 2014, , 200-276.	0.1	0
129	Piezoelectric Nanomaterials for Energy Harvesting. Nanoscience and Technology, 2016, , 193-213.	1.5	O
130	Alignment and Transfer of Nanowires in a Spinning Langmuir Film. Mechanical Engineering Series, 2018, , 21-37.	0.1	0
131	(Invited) Growth of Vertically Aligned Piezoelectric Diphenylalanine Peptide Microrods for Energy Harvesting. ECS Meeting Abstracts, 2016, , .	0.0	О
132	Control System of Powered Wheelchairs Based on Tongue Motion Detection. International Journal of Software Science and Computational Intelligence, 2016, 8, 60-75.	1.8	0
133	(Invited) Piezoelectric Peptide-Based Energy Harvesters. ECS Meeting Abstracts, 2018, , .	0.0	0
134	(Invited) Design and Energy Application of Piezoelectric Biomaterials. ECS Meeting Abstracts, 2019, , .	0.0	0
135	(Invited) Piezoelectric Biomaterials: From Controlled Growth to New Applications. ECS Meeting Abstracts, 2020, MA2020-01, 1413-1413.	0.0	0