

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4320194/publications.pdf Version: 2024-02-01

		7561	7152
154	26,304	77	153
papers	citations	h-index	g-index
157	157	157	21600
all docs	docs citations	times ranked	citing authors

WELLIO

#	Article	IF	CITATIONS
1	B-incorporated, N-doped hierarchically porous carbon nanosheets as anodes for boosted potassium storage capability. Chinese Chemical Letters, 2022, 33, 480-485.	4.8	15
2	Copper fluoride as a low-cost sodium-ion battery cathode with high capacity. Chinese Chemical Letters, 2022, 33, 1435-1438.	4.8	10
3	Implanting a Fireâ€Extinguishing Alkyl in Sodium Metal Battery Electrolytes via a Functional Molecule. Advanced Functional Materials, 2022, 32, 2109378.	7.8	15
4	A lithium-MXene composite anode with high specific capacity and low interfacial resistance for solid-state batteries. Energy Storage Materials, 2022, 45, 934-940.	9.5	34
5	Evaluating Interfacial Stability in Solid-State Pouch Cells via Ultrasonic Imaging. ACS Energy Letters, 2022, 7, 650-658.	8.8	32
6	A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy and Environmental Science, 2022, 15, 1325-1333.	15.6	98
7	Enabling Anionic Redox Stability of P2â€Na _{5/6} Li _{1/4} Mn _{3/4} O ₂ by Mg Substitution. Advanced Materials, 2022, 34, e2105404.	11.1	46
8	Deciphering the Role of Fluoroethylene Carbonate towards Highly Reversible Sodium Metal Anodes. Research, 2022, 2022, 9754612.	2.8	23
9	Clinical Applications of Liquid Biopsy in Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 781820.	1.3	12
10	Charging sustainable batteries. Nature Sustainability, 2022, 5, 176-178.	11.5	70
11	Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Spinel Cathode Materials. Advanced Functional Materials, 2022, 32, .	7.8	13
12	<i>De novo</i> designed peptides form a highly catalytic ordered nanoarchitecture on a graphite surface. Nanoscale, 2022, 14, 8326-8331.	2.8	4
13	Toward High Temperature Sodium Metal Batteries via Regulating the Electrolyte/Electrode Interfacial Chemistries. ACS Energy Letters, 2022, 7, 2032-2042.	8.8	37
14	Mgâ€Pillared LiCoO ₂ : Towards Stable Cycling at 4.6â€V. Angewandte Chemie - International Edition, 2021, 60, 4682-4688.	7.2	135
15	Mgâ€Pillared LiCoO ₂ : Towards Stable Cycling at 4.6â€V. Angewandte Chemie, 2021, 133, 4732-4738.	1.6	47
16	Sandwich-structured polymer nanocomposites with Ba0·6Sr0·4TiO3 nanofibers networks as mediate layer inducing enhanced energy storage density. Composites Science and Technology, 2021, 204, 108628.	3.8	26
17	Diffusion of LLPS Droplets Consisting of Poly(PR) Dipeptide Repeats and RNA on Chemically Modified Glass Surface. Langmuir, 2021, 37, 5635-5641.	1.6	11
18	Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a Li Metal Anode. ACS Energy Letters, 2021, 6, 2054-2063.	8.8	79

#	Article	IF	CITATIONS
19	Fluorideâ€Rich Solidâ€Electrolyteâ€Interface Enabling Stable Sodium Metal Batteries in Highâ€Safe Electrolytes. Advanced Functional Materials, 2021, 31, 2103522.	7.8	66
20	Ingestible, Biofriendly, and Flexible Flour-Based Humidity Sensors with a Wide Sensing Range. ACS Applied Electronic Materials, 2021, 3, 2798-2806.	2.0	9
21	TiO ₂ Nanofiber-Modified Lithium Metal Composite Anode for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28398-28404.	4.0	31
22	Aqueous Ferrous Chloride as a Low-Cost Corrosive to Deal with Spent Coin-Type Cells. Energy & Fuels, 2021, 35, 14122-14129.	2.5	0
23	Critical effects of electrolyte recipes for Li and Na metal batteries. CheM, 2021, 7, 2312-2346.	5.8	144
24	Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy and Environmental Science, 2021, 14, 4936-4947.	15.6	96
25	Opportunities for High-Entropy Materials in Rechargeable Batteries. , 2021, 3, 160-170.		72
26	Gramâ€Scale Synthesis of Nanosized Li ₃ HoBr ₆ Solid Electrolyte for Allâ€Solidâ€State Liâ€Se Battery. Small Methods, 2021, 5, e2101002.	4.6	22
27	Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. Advanced Science, 2021, 8, e2102859.	5.6	32
28	Fast Li-ion Conductor of Li ₃ HoBr ₆ for Stable All-Solid-State Lithium–Sulfur Battery. Nano Letters, 2021, 21, 9325-9331.	4.5	41
29	Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures. Energy Storage Materials, 2020, 24, 714-718.	9.5	74
30	Reducing Interfacial Resistance by Na-SiO ₂ Composite Anode for NASICON-Based Solid-State Sodium Battery. , 2020, 2, 127-132.		84
31	Graphitic Carbon Nitride (g ₃ N ₄): An Interface Enabler for Solid‣tate Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 3728-3733.	1.6	32
32	Graphitic Carbon Nitride (g ₃ N ₄): An Interface Enabler for Solid‣tate Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 3699-3704.	7.2	220
33	Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy, 2020, 69, 104387.	8.2	70
34	Is graphite lithiophobic or lithiophilic?. National Science Review, 2020, 7, 1208-1217.	4.6	126
35	Lithium Metal-Based Composite: An Emerging Material for Next-Generation Batteries. Matter, 2020, 3, 1009-1030.	5.0	35
36	Achieving the Stable Structure and Superior Performance of Na ₃ V ₂ (PO ₄) ₂ O ₂ F Cathodes via Na-Site Regulation. ACS Applied Energy Materials, 2020, 3, 7649-7658.	2.5	18

#	Article	IF	CITATIONS
37	Nanocomposite Coatings: Stable Interface between Lithium and Electrolyte Facilitated by a Nanocomposite Protective Layer (Small Methods 3/2020). Small Methods, 2020, 4, 2070014.	4.6	1
38	A writable lithium metal ink. Science China Chemistry, 2020, 63, 1483-1489.	4.2	45
39	Targeting JAK-STAT Signaling to Control Cytokine Release Syndrome in COVID-19. Trends in Pharmacological Sciences, 2020, 41, 531-543.	4.0	220
40	Shaping the Contact between Li Metal Anode and Solid‣tate Electrolytes. Advanced Functional Materials, 2020, 30, 1908701.	7.8	44
41	Stable Interface between Lithium and Electrolyte Facilitated by a Nanocomposite Protective Layer. Small Methods, 2020, 4, 1900751.	4.6	33
42	Sodium/Potassiumâ€lon Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. Advanced Materials, 2020, 32, e1904320.	11.1	335
43	Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy and Environmental Science, 2020, 13, 1788-1798.	15.6	120
44	Atomic layer deposition of core-shell structured V2O5@CNT sponge as cathode for potassium ion batteries. Journal of Materiomics, 2019, 5, 344-349.	2.8	27
45	Boosting the Reversibility of Sodium Metal Anode via Heteroatomâ€Đoped Hollow Carbon Fibers. Small, 2019, 15, e1902688.	5.2	76
46	Facile Approach for Synthesizing High-Performance MnO/C Electrodes from Rice Husk. ACS Omega, 2019, 4, 18908-18917.	1.6	17
47	Targeted Surface Doping with Reversible Local Environment Improves Oxygen Stability at the Electrochemical Interfaces of Nickel-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 37885-37891.	4.0	33
48	Lithium–Graphite Paste: An Interface Compatible Anode for Solid‧tate Batteries. Advanced Materials, 2019, 31, e1807243.	11.1	197
49	Toward a Stable Sodium Metal Anode in Carbonate Electrolyte: A Compact, Inorganic Alloy Interface. Journal of Physical Chemistry Letters, 2019, 10, 707-714.	2.1	132
50	Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping. Materials Today Energy, 2019, 13, 145-151.	2.5	79
51	High-Voltage All-Solid-State Na-Ion-Based Full Cells Enabled by All NASICON-Structured Materials. ACS Applied Materials & Interfaces, 2019, 11, 24192-24197.	4.0	25
52	Chitosan Derived Carbon Matrix Encapsulated CuP ₂ Nanoparticles for Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2019, 11, 12415-12420.	4.0	32
53	Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications. Journal of Materials Chemistry A, 2019, 7, 24715-24737.	5.2	61
54	Highly Adhesive Li-BN Nanosheet Composite Anode with Excellent Interfacial Compatibility for Solid-State Li Metal Batteries. ACS Nano, 2019, 13, 14549-14556.	7.3	123

#	Article	IF	CITATIONS
55	Rechargeable potassium-ion batteries enabled by potassium-iodine conversion chemistry. Energy Storage Materials, 2019, 16, 1-5.	9.5	71
56	Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Materials, 2019, 16, 6-23.	9.5	243
57	Promises, Challenges, and Recent Progress of Inorganic Solid‣tate Electrolytes for All‣olid‣tate Lithium Batteries. Advanced Materials, 2018, 30, e1705702.	11.1	743
58	Allâ€Solidâ€State Batteries: Promises, Challenges, and Recent Progress of Inorganic Solidâ€State Electrolytes for Allâ€Solidâ€State Lithium Batteries (Adv. Mater. 17/2018). Advanced Materials, 2018, 30, 1870122.	11.1	36
59	Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3770-3775.	3.3	250
60	Plasmonic Wood for High‣fficiency Solar Steam Generation. Advanced Energy Materials, 2018, 8, 1701028.	10.2	701
61	Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.	11.1	359
62	Highly Conductive, Light Weight, Robust, Corrosionâ€Resistant, Scalable, Allâ€Fiber Based Current Collectors for Aqueous Acidic Batteries. Advanced Energy Materials, 2018, 8, 1702615.	10.2	63
63	High temperature thermal management with boron nitride nanosheets. Nanoscale, 2018, 10, 167-173.	2.8	48
64	Activate metallic copper as high-capacity cathode for lithium-ion batteries via nanocomposite technology. Nano Energy, 2018, 54, 59-65.	8.2	22
65	Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode. Nano Letters, 2018, 18, 3926-3933.	4.5	175
66	Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS Nano, 2018, 12, 5266-5273.	7.3	51
67	Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy, 2018, 51, 513-523.	8.2	332
68	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	10.2	196
69	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
70	A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance. Npj 2D Materials and Applications, 2018, 2, .	3.9	64
71	Electrode Materials of Sodium-Ion Batteries toward Practical Application. ACS Energy Letters, 2018, 3, 1604-1612.	8.8	214
72	Catalyst-Free <i>In Situ</i> Carbon Nanotube Growth in Confined Space <i>via</i> High Temperature Gradient. Research, 2018, 2018, 1793784.	2.8	7

#	Article	IF	CITATIONS
73	Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy, 2017, 33, 37-44.	8.2	159
74	A carbon-based 3D current collector with surface protection for Li metal anode. Nano Research, 2017, 10, 1356-1365.	5.8	200
75	Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 14801-14807.	4.0	77
76	Reducing Interfacial Resistance between Garnet‣tructured Solid‣tate Electrolyte and Liâ€Metal Anode by a Germanium Layer. Advanced Materials, 2017, 29, 1606042.	11.1	512
77	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	7.3	151
78	Highly Conductive, Lightweight, Lowâ€Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors. Advanced Energy Materials, 2017, 7, 1700595.	10.2	210
79	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. Nano Letters, 2017, 17, 3792-3797.	4.5	243
80	3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination. Advanced Materials, 2017, 29, 1700981.	11.1	511
81	Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. Advanced Functional Materials, 2017, 27, 1701450.	7.8	160
82	Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3, e1601659.	4.7	647
83	Anisotropic, Transparent Films with Aligned Cellulose Nanofibers. Advanced Materials, 2017, 29, 1606284.	11.1	202
84	High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3584-3589.	3.3	412
85	Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. Nano Letters, 2017, 17, 565-571.	4.5	556
86	Surface and Interface Engineering of Siliconâ€Based Anode Materials for Lithiumâ€ion Batteries. Advanced Energy Materials, 2017, 7, 1701083.	10.2	354
87	Protection of boron nitride nanosheets by atomic layer deposition toward thermal energy management applications. Nano Energy, 2017, 40, 149-154.	8.2	5
88	Ultrathin Surface Coating Enables the Stable Sodium Metal Anode. Advanced Energy Materials, 2017, 7, 1601526.	10.2	312
89	Highly Anisotropic, Highly Transparent Wood Composites. Advanced Materials, 2016, 28, 5181-5187.	11.1	518
90	Ultraâ€Thick, Lowâ€Tortuosity, and Mesoporous Wood Carbon Anode for Highâ€Performance Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1600377.	10.2	257

#	Article	IF	CITATIONS
91	All omponent Transient Lithiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1502496.	10.2	47
92	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	6.6	120
93	Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors. Nano Letters, 2016, 16, 3616-3623.	4.5	187
94	Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. Journal of the American Chemical Society, 2016, 138, 12258-12262.	6.6	548
95	Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper. ACS Applied Materials & Interfaces, 2016, 8, 28838-28843.	4.0	53
96	Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. Advanced Energy Materials, 2016, 6, 1601122.	10.2	228
97	A Solutionâ€Processed Highâ€Temperature, Flexible, Thinâ€Film Actuator. Advanced Materials, 2016, 28, 8618-8624.	11.1	53
98	<i>In Situ</i> Transmission Electron Microscopy Observation of Sodiation–Desodiation in a Long Cycle, High-Capacity Reduced Graphene Oxide Sodium-Ion Battery Anode. Chemistry of Materials, 2016, 28, 6528-6535.	3.2	79
99	Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 2016, 116, 9305-9374.	23.0	1,110
100	Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale, 2016, 8, 19326-19333.	2.8	80
101	Na-Ion Battery Anodes: Materials and Electrochemistry. Accounts of Chemical Research, 2016, 49, 231-240.	7.6	886
102	A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Materials, 2016, 2, 63-68.	9.5	141
103	A stable nanoporous silicon anode prepared by modified magnesiothermic reactions. Nano Energy, 2016, 20, 68-75.	8.2	65
104	Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery. ACS Applied Materials & Interfaces, 2016, 8, 2204-2210.	4.0	146
105	Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. ACS Central Science, 2015, 1, 516-522.	5.3	202
106	Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent. ACS Applied Materials & Interfaces, 2015, 7, 2626-2631.	4.0	226
107	A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Letters, 2015, 15, 6149-6154.	4.5	313
108	Transient Rechargeable Batteries Triggered by Cascade Reactions. Nano Letters, 2015, 15, 4664-4671.	4.5	77

#	Article	IF	CITATIONS
109	Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks. Nano Letters, 2015, 15, 3763-3769.	4.5	46
110	Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. Advanced Functional Materials, 2015, 25, 2920-2927.	7.8	150
111	Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries. Scientific Reports, 2015, 5, 9254.	1.6	255
112	Potassium Ion Batteries with Graphitic Materials. Nano Letters, 2015, 15, 7671-7677.	4.5	805
113	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23291-23296.	4.0	123
114	Carbon Electrodes for K-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 11566-11569.	6.6	1,559
115	Na Metal Anode: "Holy Grail―for Room-Temperature Na-Ion Batteries?. ACS Central Science, 2015, 1, 420-422.	5.3	46
116	Organic electrode for non-aqueous potassium-ion batteries. Nano Energy, 2015, 18, 205-211.	8.2	397
117	Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors. Nano Energy, 2015, 11, 600-610.	8.2	100
118	Multiple Ambient Hydrolysis Deposition of Tin Oxide into Nanoporous Carbon To Give a Stable Anode for Lithium-Ion Batteries. Chemistry - A European Journal, 2014, 20, 7686-7691.	1.7	22
119	Electrospun Conformal Li ₄ Ti ₅ O ₁₂ /C Fibers for Highâ€Rate Lithiumâ€ion Batteries. ChemElectroChem, 2014, 1, 611-616.	1.7	43
120	Ambient hydrolysis deposition of TiO2 in nanoporous carbon and the converted TiN–carbon capacitive electrode. Journal of Materials Chemistry A, 2014, 2, 2901.	5.2	19
121	Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures. Chemical Communications, 2014, 50, 5435.	2.2	53
122	Pyrolysis of Cellulose under Ammonia Leads to Nitrogen-Doped Nanoporous Carbon Generated through Methane Formation. Nano Letters, 2014, 14, 2225-2229.	4.5	297
123	Superior Cathode of Sodium-Ion Batteries: Orthorhombic V ₂ O ₅ Nanoparticles Generated in Nanoporous Carbon by Ambient Hydrolysis Deposition. Nano Letters, 2014, 14, 4119-4124.	4.5	211
124	Highly porous Li 4 Ti 5 O 12 /C nanofibers for ultrafast electrochemical energy storage. Nano Energy, 2014, 10, 163-171.	8.2	165
125	Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon, 2014, 76, 165-174.	5.4	279
126	An Organic Pigment as a Highâ€Performance Cathode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400554.	10.2	339

#	Article	IF	CITATIONS
127	Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 4229.	1.6	131
128	Microwaveâ€Induced Inâ€Situ Synthesis of Zn ₂ GeO ₄ /Nâ€Doped Graphene Nanocomposites and Their Lithiumâ€Storage Properties. Chemistry - A European Journal, 2013, 19, 6027-6033.	1.7	83
129	Reconstruction of Conformal Nanoscale MnO on Graphene as a Highâ€Capacity and Longâ€Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 2436-2444.	7.8	770
130	Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic Reactions. Scientific Reports, 2013, 3, 2222.	1.6	125
131	Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10662.	5.2	337
132	Controlled Synthesis of Mesoporous MnO/C Networks by Microwave Irradiation and Their Enhanced Lithium-Storage Properties. ACS Applied Materials & 2013, 1, 1997-2003.	4.0	162
133	Electrospun porous LiNb3O8 nanofibers with enhanced lithium-storage properties. Journal of Materials Chemistry A, 2013, 1, 15053.	5.2	39
134	Production of graphene by reduction using a magnesiothermic reaction. Chemical Communications, 2013, 49, 10676.	2.2	23
135	Self-assembly of hybrid Fe2Mo3O8–reduced graphene oxide nanosheets with enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 4468.	5.2	40
136	Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium–ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 2954.	1.3	70
137	Synthesis of Amorphous FeOOH/Reduced Graphene Oxide Composite by Infrared Irradiation and Its Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2013, 5, 10145-10150.	4.0	52
138	Osteogenic potentials of osteophytes in the cervical spine compared with patient matched bone marrow stromal cells. Indian Journal of Orthopaedics, 2013, 47, 565.	0.5	1
139	Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 13826.	6.7	119
140	Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 8916.	6.7	328
141	Surface modification of electrospun TiO2 nanofibers via layer-by-layer self-assembly for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 4910.	6.7	60
142	Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. Journal of Materials Chemistry, 2012, 22, 19190.	6.7	150
143	Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 20794-20799.	1.5	154
144	Ultrafine MoO ₂ nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 425-431.	6.7	175

#	Article	IF	CITATIONS
145	Layer-by-layer assembled MoO2–graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. Nanoscale, 2012, 4, 4707.	2.8	127
146	Facile synthesis of mesoporous 0.4Li2MnO3·0.6LiNi2/3Mn1/3O2 foams with superior performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 14964.	6.7	42
147	Hierarchical self-assembly of Mn2Mo3O8–graphene nanostructures and their enhanced lithium-storage properties. Journal of Materials Chemistry, 2011, 21, 17229.	6.7	50
148	Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2870.	15.6	245
149	Self-Assembled Hierarchical MoO ₂ /Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano, 2011, 5, 7100-7107.	7.3	611
150	Improved Electrochemical Performance in Li3V2(PO4)3 Promoted by Niobium-Incorporation. Journal of the Electrochemical Society, 2011, 158, A924.	1.3	46
151	Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Physical Chemistry Chemical Physics, 2011, 13, 16735.	1.3	113
152	Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype utilizing simulated microgravity In vitro. Journal of Huazhong University of Science and Technology [Medical Sciences], 2011, 31, 199-203.	1.0	21
153	Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochimica Et Biophysica Sinica, 2011, 43, 210-216.	0.9	35
154	Negative Temperature Coefficient Material with Low Thermal Constant and High Resistivity for Lowâ€Temperature Thermistor Applications. Journal of the American Ceramic Society, 2009, 92, 2682-2686.	1.9	53