Bryan R Moser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4320149/publications.pdf Version: 2024-02-01

		87843	74108
111	6,173	38	75
papers	citations	h-index	g-index
113	113	113	6119
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lewatit-immobilized lipase from Bacillus pumilus as a new catalyst for biodiesel production from tallow: Response surface optimization, fuel properties and exhaust emissions. Chemical Engineering Research and Design, 2022, 160, 286-296.	2.7	6
2	Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel, 2022, 317, 123525.	3.4	30
3	Sub- and Near-Critical Hydrothermal Carbonization of Animal Manures. Sustainability, 2022, 14, 5052.	1.6	4
4	A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. JAOCS, Journal of the American Oil Chemists' Society, 2022, 99, 801-842.	0.8	30
5	Production of Industrially Useful and Renewable p―Cymene by Catalytic Dehydration and Isomerization of Perillyl Alcohol. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 305-316.	0.8	3
6	A Novel Route of Mixed Catalysis for Production of Fatty Acid Methyl Esters from Potential Seed Oil Sources. Catalysts, 2021, 11, 811.	1.6	9
7	Decarboxylation of oleic acid using iridium catalysis to form products of increased aromatic content compared to ruthenium systems. International Journal of Sustainable Engineering, 2021, 14, 2018-2024.	1.9	4
8	Bifunctional biomass-based catalyst for biodiesel production via hydrothermal carbonization (HTC) pretreatment – Synthesis, characterization and optimization. Chemical Engineering Research and Design, 2021, 156, 219-230.	2.7	10
9	Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel. Energies, 2021, 14, 7148.	1.6	4
10	A Novel Heterogeneous Superoxide Support-Coated Catalyst for Production of Biodiesel from Roasted and Unroasted Sinapis arvensis Seed Oil. Catalysts, 2021, 11, 1421.	1.6	4
11	Production of Biodiesel from Spirogyra elongata, a Common Freshwater Green Algae with High Oil Content. Sustainability, 2021, 13, 12737.	1.6	5
12	Comprehensive Comparison of Hetero-Homogeneous Catalysts for Fatty Acid Methyl Ester Production from Non-Edible Jatropha curcas Oil. Catalysts, 2021, 11, 1420.	1.6	7
13	Pyrolysis of creosote-treated railroad ties to recover creosote and produce biochar. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104826.	2.6	3
14	Renewable Aliphatic Polyesters from Fatty Dienes by Acyclic Diene Metathesis Polycondensation. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 517-530.	0.8	14
15	Renewable Poly(Thioetherâ€Ester)s from Fatty Acid Derivatives via Thiolâ€Ene Photopolymerization. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 825-837.	0.8	14
16	Turning a burden into an opportunity: Pennycress (Thlaspi arvense L.) a new oilseed crop for biofuel production. Biomass and Bioenergy, 2019, 130, 105354.	2.9	25
17	Hydrodeoxygenation–Alkylation Pathway for the Synthesis of a Sustainable Lubricant Improver from Plant Oils and Lignin-Derived Phenols. Industrial & Engineering Chemistry Research, 2019, 58, 4317-4330.	1.8	11
18	Evaluation of Dominant Parameters in Lipase Transesterification of Cottonseed Oil. Transactions of the ASABE, 2019, 62, 467-474.	1.1	4

#	Article	IF	CITATIONS
19	Improving biodiesel monoglyceride determination by ASTM method D6584-17. Fuel, 2019, 241, 65-70.	3.4	10
20	Appraisal of Biodiesel Prepared Via Acid Catalysis from Palm Fatty Acid Distillate. Iranian Journal of Science and Technology, Transaction A: Science, 2019, 43, 2205-2210.	0.7	3
21	Biobased poly(vinyl ether)s derived from soybean oil, linseed oil, and camelina oil: Synthesis, characterization, and properties of crosslinked networks and surface coatings. Progress in Organic Coatings, 2018, 125, 453-462.	1.9	29
22	Catalytic Thermal Cracking of Postconsumer Waste Plastics to Fuels. 2. Pilot-Scale Thermochemical Conversion. Energy & amp; Fuels, 2017, 31, 2705-2715.	2.5	18
23	Parameters Governing Ruthenium Sawhorse-Based Decarboxylation of Oleic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 864-871.	1.8	14
24	Biobased Methacrylic Acid via Selective Catalytic Decarboxylation of Itaconic Acid. ACS Sustainable Chemistry and Engineering, 2017, 5, 3132-3140.	3.2	33
25	Decarboxylation of Fatty Acids with Triruthenium Dodecacarbonyl: Influence of the Compound Structure and Analysis of the Product Mixtures. ACS Omega, 2017, 2, 6473-6480.	1.6	18
26	Naturally Occurring Fatty Acids. , 2017, , 23-82.		22
27	Field Pennycress: A New Oilseed Crop for the Production of Biofuels, Lubricants, and High-Quality Proteins. , 2017, , 369-400.		1
28	Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 2016, 113, 1676-1690.	1.7	110
29	Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic. Energy, 2016, 111, 884-892.	4.5	84
30	Fatty acid composition of fourteen seashore mallow (Kosteletzkya pentacarpos) seed oil accessions collected from the Atlantic and Gulf coasts of the United States. Industrial Crops and Products, 2016, 87, 20-26.	2.5	6
31	Analysis and Properties of the Decarboxylation Products of Oleic Acid by Catalytic Triruthenium Dodecacarbonyl. Energy & Fuels, 2016, 30, 7443-7451.	2.5	13
32	Improved oxidative stability of biodiesel via alternative processing methods using cottonseed oil. International Journal of Sustainable Engineering, 2016, , 1-10.	1.9	2
33	Producing Monomers and Polymers from Plant Oils*. , 2016, , 79-98.		3
34	Synthesis and Characterization of Phosphonates from Methyl Linoleate and Vegetable Oils. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1671-1682.	0.8	12
35	Preparation and Fuel Properties of Field Pennycress (Thlaspi arvense) Seed Oil Ethyl Esters and Blends with Ultralow-Sulfur Diesel Fuel. Energy & Fuels, 2016, 30, 473-479.	2.5	16
36	Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts. RSC Advances, 2016, 6, 20695-20705.	1.7	13

#	Article	IF	CITATIONS
37	Antioxidants from Slow Pyrolysis Bio-Oil of Birch Wood: Application for Biodiesel and Biobased Lubricants. ACS Sustainable Chemistry and Engineering, 2016, 4, 1414-1421.	3.2	36
38	Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending. Renewable Energy, 2016, 85, 819-825.	4.3	61
39	Identification of superior lipid producing Lipomyces and Myxozyma yeasts. AIMS Environmental Science, 2016, 3, 1-20.	0.7	35
40	Influence of fatty acid composition on properties of industrial products and fuels. Inform, 2016, , 28-29.	0.1	0
41	The Cephalostatins. 23. Conversion of Hecogenin to a Steroidal 1,6-Dioxaspiro[5.5]nonane Analogue for Cephalostatin 11. Journal of Natural Products, 2015, 78, 1067-1072.	1.5	9
42	Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Industrial Crops and Products, 2015, 66, 44-51.	2.5	50
43	Fuel properties of Brassica juncea oil methyl esters blended with ultra-low sulfur diesel fuel. Renewable Energy, 2015, 78, 82-88.	4.3	15
44	Process for Assembly and Transformation intoSaccharomyces cerevisiaeof a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform. Journal of the Association for Laboratory Automation, 2015, 20, 621-635.	2.8	10
45	Fatty acid profile of seashore mallow (<i>Kosteletzkya pentacarpos</i>) seed oil and properties of the methyl esters. European Journal of Lipid Science and Technology, 2015, 117, 1287-1294.	1.0	10
46	Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil. Industrial Crops and Products, 2015, 66, 188-193.	2.5	16
47	Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates. Applied Microbiology and Biotechnology, 2015, 99, 9723-9743.	1.7	12
48	Catalytic Thermal Cracking of Postconsumer Waste Plastics to Fuels. 1. Kinetics and Optimization. Energy & Fuels, 2015, 29, 6068-6077.	2.5	61
49	Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 2015, 33, 43-54.	4.9	259
50	Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Industrial Crops and Products, 2015, 65, 467-471.	2.5	33
51	Proposed technological improvements to ensure biodieselâ€~s continued survival as a significant alternative to diesel fuel. Biofuels, 2014, 5, 5-8.	1.4	6
52	Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Applied Microbiology and Biotechnology, 2014, 98, 8413-8431.	1.7	52
53	Moving Toward Energy Security and Sustainability in 2050 by Reconfiguring Biofuel Production. Biotechnology in Agriculture and Forestry, 2014, , 15-29.	0.2	3
54	Impact of fatty ester composition on low temperature properties of biodiesel–petroleum diesel blends. Fuel, 2014, 115, 500-506.	3.4	68

#	Article	IF	CITATIONS
55	Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology, 2014, 122, 79-90.	3.7	235
56	Evaluating the Phytochemical Potential of Camelina: An Emerging New Crop of Old World Origin. , 2014, , 129-148.		10
57	Method for obtaining three products with different properties from fennel (Foeniculum vulgare) seed. Industrial Crops and Products, 2014, 60, 335-342.	2.5	16
58	Preparation and Evaluation of Multifunctional Branched Diesters As Fuel Property Enhancers for Biodiesel and Petroleum Diesel Fuels. Energy & Fuels, 2014, 28, 3262-3270.	2.5	18
59	Complete Utilization of Spent Coffee Grounds To Produce Biodiesel, Bio-Oil, and Biochar. ACS Sustainable Chemistry and Engineering, 2013, 1, 1286-1294.	3.2	246
60	Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol. Renewable Energy, 2013, 50, 833-839.	4.3	38
61	Seashore mallow (Kosteletzkya pentacarpos) stems as a feedstock for biodegradable absorbents. Biomass and Bioenergy, 2013, 59, 300-305.	2.9	7
62	Biodiesel from alternative oilseed feedstocks: camelina and field pennycress. Biofuels, 2012, 3, 193-209.	1.4	95
63	Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol. Journal of Biotechnology, 2012, 159, 69-77.	1.9	9
64	Efficacy of specific gravity as a tool for prediction of biodiesel–petroleum diesel blend ratio. Fuel, 2012, 99, 254-261.	3.4	16
65	The Cephalostatins. 22. Synthesis of Bis-steroidal Pyrazine Pyrones. Journal of Natural Products, 2012, 75, 1063-1069.	1.5	15
66	Biodiesel from Corn Distillers Dried Grains with Solubles: Preparation, Evaluation, and Properties. Bioenergy Research, 2012, 5, 439-449.	2.2	25
67	Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel. Fuel, 2012, 92, 231-238.	3.4	94
68	Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass and Bioenergy, 2012, 37, 31-41.	2.9	58
69	Efficacy of gossypol as an antioxidant additive in biodiesel. Renewable Energy, 2012, 40, 65-70.	4.3	30
70	Mixed Alkyl Esters from Cottonseed Oil: Improved Biodiesel Properties and Blends with Diesel Fuel. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 145-153.	0.8	6
71	Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties. Energy and Environmental Science, 2011, 4, 2160.	15.6	26
72	Preparation of Fatty Acid Methyl Esters from Osage Orange (Maclura pomifera) Oil and Evaluation as Biodiesel. Energy & Fuels, 2011, 25, 1869-1877.	2.5	23

#	Article	IF	CITATIONS
73	Biodiesel Production, Properties, and Feedstocks. , 2011, , 285-347.		51
74	Physical Properties and Fatty Acid Profiles of Oils from Black, Kidney, Great Northern, and Pinto Beans. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 193-200.	0.8	22
75	Effect of Soybean Oil Fatty Acid Composition and Selenium Application on Biodiesel Properties. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1019-1028.	0.8	12
76	Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties. Biomass and Bioenergy, 2011, 35, 3262-3266.	2.9	237
77	Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean and sunflower oils. Renewable Energy, 2011, 36, 1221-1226.	4.3	60
78	Production of Candida antarctica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell and Expression in an Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production. Journal of the Association for Laboratory Automation, 2011, 16, 17-37.	2.8	6
79	Preparation and Evaluation of Jojoba Oil Methyl Esters as Biodiesel and as a Blend Component in Ultra-Low Sulfur Diesel Fuel. Bioenergy Research, 2010, 3, 214-223.	2.2	55
80	Composition and physical properties of arugula, shepherd's purse, and upland cress oils. European Journal of Lipid Science and Technology, 2010, 112, 734-740.	1.0	9
81	Improvement of fuel properties of cottonseed oil methyl esters with commercial additives. European Journal of Lipid Science and Technology, 2010, 112, 802-809.	1.0	19
82	Camelina (<i>Camelina sativa</i> L.) oil as a biofuels feedstock: Golden opportunity or false hope?. Lipid Technology, 2010, 22, 270-273.	0.3	173
83	Effects of blending alcohols with poultry fat methyl esters on cold flow properties. Renewable Energy, 2010, 35, 2207-2210.	4.3	32
84	Preparation and fuel properties of mixtures of soybean oil methyl and ethyl esters. Biomass and Bioenergy, 2010, 34, 14-20.	2.9	65
85	Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stabilityâ~†. Biomass and Bioenergy, 2010, 34, 550-558.	2.9	99
86	Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuelâ~†. Bioresource Technology, 2010, 101, 646-653.	4.8	242
87	Preparation of Biofuel Using Acetylatation of Jojoba Fatty Alcohols and Assessment as a Blend Component in Ultralow Sulfur Diesel Fuel. Energy & Fuels, 2010, 24, 3189-3194.	2.5	21
88	Biodiesel from meadowfoam (Limnanthes alba L.) seed oil: oxidative stability and unusual fatty acid composition. Energy and Environmental Science, 2010, 3, 318.	15.6	40
89	Glycerol Tri-Ester Derivatives as Diluent to Improve Low Temperature Properties of Vegetable Oils. Journal of ASTM International, 2010, 7, 1-10.	0.2	1

20 Composition and physical properties of cress (Lepidium sativum L.) and field pennycress (Thlaspi) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 0

#	Article	IF	CITATIONS
91	Biodiesel from canola oil using a 1â€:â€1 molar mixture of methanol and ethanol. European Journal of Lipid Science and Technology, 2009, 111, 464-473.	1.0	29
92	Comparative Oxidative Stability of Fatty Acid Alkyl Esters by Accelerated Methods. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 699-706.	0.8	111
93	Wild Brazilian Mustard (<i>Brassica juncea</i> L.) Seed Oil Methyl Esters as Biodiesel Fuel. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 917-926.	0.8	86
94	Biodiesel production, properties, and feedstocks. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 229-266.	0.9	558
95	Comparing the lubricity of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel. Fuel, 2009, 88, 1143-1147.	3.4	61
96	Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra low sulfur diesel fuel. Fuel Processing Technology, 2009, 90, 1122-1128.	3.7	99
97	E-Combretastatin and E-resveratrol structural modifications: Antimicrobial and cancer cell growth inhibitory β-E-nitrostyrenes. Bioorganic and Medicinal Chemistry, 2009, 17, 6606-6612.	1.4	33
98	Production and Evaluation of Biodiesel from Field Pennycress (<i>Thlaspi arvense</i> L.) Oil ^{â€} . Energy & Fuels, 2009, 23, 4149-4155.	2.5	187
99	Efficacy of myricetin as an antioxidant in methyl esters of soybean oil. European Journal of Lipid Science and Technology, 2008, 110, 1167-1174.	1.0	33
100	Moringa oleifera oil: A possible source of biodiesel. Bioresource Technology, 2008, 99, 8175-8179.	4.8	424
101	Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy, 2008, 32, 1202-1205.	2.9	210
102	Branched chain derivatives of alkyl oleates: Tribological, rheological, oxidation, and low temperature properties. Fuel, 2008, 87, 2253-2257.	3.4	61
103	Review of Cytotoxic Cephalostatins and Ritterazines: Isolation and Synthesis. Journal of Natural Products, 2008, 71, 487-491.	1.5	89
104	Antineoplastic Agents. 552. Oxidation of Combretastatin A-1: Trapping the <i>o</i> -Quinone Intermediate Considered the Metabolic Product of the Corresponding Phosphate Prodrug. Journal of Natural Products, 2008, 71, 1561-1563.	1.5	29
105	Evaluation of Castor and Lesquerella Oil Derivatives as Additives in Biodiesel and Ultralow Sulfur Diesel Fuels. Energy & Fuels, 2008, 22, 1349-1352.	2.5	76
106	Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Biodiesel. Energy & Fuels, 2008, 22, 4301-4306.	2.5	205
107	Surface Tension Studies of Alkyl Esters and Epoxidized Alkyl Esters Relevant to Oleochemically Based Fuel Additives. Energy & Fuels, 2007, 21, 3044-3048.	2.5	51
108	Evaluation of partially hydrogenated methyl esters of soybean oil as biodiesel. European Journal of Lipid Science and Technology, 2007, 109, 17-24.	1.0	94

Bryan R Moser

#	Article	IF	CITATIONS
109	Preparation and evaluation of a series of αâ€hydroxy ethers from 9,10â€epoxystearates. European Journal of Lipid Science and Technology, 2007, 109, 206-213.	1.0	48
110	Diesters from Oleic Acid: Synthesis, Low Temperature Properties, and Oxidation Stability. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 675-680.	0.8	84
111	πSynthesis and evaluation of a series of α-hydroxy ethers derived from isopropyl oleate. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 959-963.	0.8	45