
Emiko Mizoguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4319999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic Intestinal Inflammatory Condition Generates IL-10-Producing Regulatory B Cell Subset Characterized by CD1d Upregulation. Immunity, 2002, 16, 219-230.	6.6	879
2	IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. Journal of Clinical Investigation, 2008, 118, 534-44.	3.9	825
3	Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell, 1993, 75, 275-282.	13.5	691
4	Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 2016, 22, 1137-1150.	0.9	555
5	Wiskott-Aldrich Syndrome Protein-Deficient Mice Reveal a Role for WASP in T but Not B Cell Activation. Immunity, 1998, 9, 81-91.	6.6	470
6	Human Neonatal Fc Receptor Mediates Transport of IgG into Luminal Secretions for Delivery of Antigens to Mucosal Dendritic Cells. Immunity, 2004, 20, 769-783.	6.6	429
7	Impaired IgA class switching in APRIL-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3903-3908.	3.3	401
8	Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. Journal of Clinical Investigation, 1999, 103, 1103-1111.	3.9	347
9	Suppressive Role of B Cells in Chronic Colitis of  T Cell Receptor α Mutant Mice. Journal of Experimental Medicine, 1997, 186, 1749-1756.	4.2	333
10	Development of chronic colitis is dependent on the cytokine MIF. Nature Immunology, 2001, 2, 1061-1066.	7.0	288
11	MHC Class I-Related Neonatal Fc Receptor for IgG Is Functionally Expressed in Monocytes, Intestinal Macrophages, and Dendritic Cells. Journal of Immunology, 2001, 166, 3266-3276.	0.4	279
12	T Cell–mediated Pathology in Two Models of Experimental Colitis Depends Predominantly on the Interleukin 12/Signal Transducer and Activator of Transcription (Stat)-4 Pathway, but Is Not Conditional on Interferon γ Expression by T Cells. Journal of Experimental Medicine, 1998, 187, 1225-1234.	4.2	269
13	Mice with a Selective Deletion of the CC Chemokine Receptors 5 or 2 Are Protected from Dextran Sodium Sulfate-Mediated Colitis: Lack of CC Chemokine Receptor 5 Expression Results in a NK1.1+ Lymphocyte-Associated Th2-Type Immune Response in the Intestine. Journal of Immunology, 2000, 164, 6303-6312.	0.4	242
14	Monoallelic Expression of the Interleukin-2 Locus. Science, 1998, 279, 2118-2121.	6.0	223
15	Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. Journal of Clinical Investigation, 2006, 116, 2142-2151.	3.9	199
16	Regulatory role of mature B cells in a murine model of inflammatory bowel disease. International Immunology, 2000, 12, 597-605.	1.8	192
17	Chitinase 3–Like-1 Exacerbates Intestinal Inflammation by Enhancing Bacterial Adhesion and Invasion in Colonic Epithelial Cells. Gastroenterology, 2006, 130, 398-411.	0.6	188
18	Severe colitis in mice with aberrant thymic selection. Immunity, 1995, 3, 27-38.	6.6	186

#	Article	IF	CITATIONS
19	Role of tumor necrosis factor receptor 2 (TNFR2) in colonic epithelial hyperplasia and chronic intestinal inflammation in mice. Gastroenterology, 2002, 122, 134-144.	0.6	163
20	Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World Journal of Gastroenterology, 2007, 13, 5581.	1.4	163
21	Clinical importance of IL-22 cascade in IBD. Journal of Gastroenterology, 2018, 53, 465-474.	2.3	162
22	Cadherin-11 Provides Specific Cellular Adhesion between Fibroblast-like Synoviocytes. Journal of Experimental Medicine, 2004, 200, 1673-1679.	4.2	142
23	Inflammatory bowel disease, past, present and future: lessons from animal models. Journal of Gastroenterology, 2008, 43, 1-17.	2.3	142
24	Induced Reactivity of Intestinal CD4+ T Cells with an Epithelial Cell Lectin, Galectin-4, Contributes to Exacerbation of Intestinal Inflammation. Immunity, 2004, 20, 681-693.	6.6	140
25	Evidence that CD4+, but not CD8+ T cells are responsible for murine interleukin-2-deficient colitis. European Journal of Immunology, 1995, 25, 2618-2625.	1.6	137
26	Animal models of ulcerative colitis and their application in drug research. Drug Design, Development and Therapy, 2013, 7, 1341.	2.0	132
27	Role of mammalian chitinases in inflammatory conditions. Keio Journal of Medicine, 2007, 56, 21-27.	0.5	131
28	C4b-Binding Protein (C4BP) Activates B Cells through the CD40 Receptor. Immunity, 2003, 18, 837-848.	6.6	126
29	Expression of pro-inflammatory cytokines by TCRαβ+ T and TCRγδ+ T cells in an experimental model of colitis. European Journal of Immunology, 1997, 27, 17-25.	1.6	121
30	Epicutaneous sensitization with superantigen induces allergic skin inflammation. Journal of Allergy and Clinical Immunology, 2003, 112, 981-987.	1.5	119
31	The Binding Site for TRAF2 and TRAF3 but Not for TRAF6 Is Essential for CD40-Mediated Immunoglobulin Class Switching. Immunity, 2002, 17, 265-276.	6.6	117
32	Regulatory role of B-1 B cells in chronic colitis. International Immunology, 2008, 20, 729-737.	1.8	106
33	Role of Chitotriosidase (Chitinase 1) Under Normal and Disease Conditions. Journal of Epithelial Biology & Pharmacology, 2012, 5, 1-9.	1.2	101
34	Animal models of IBD: linkage to human disease. Current Opinion in Pharmacology, 2010, 10, 578-587.	1.7	96
35	Peripheral lymphoid development and function in TCR mutant mice. International Immunology, 1994, 6, 1061-1070.	1.8	93
36	Chitinase 3-like-1 enhances bacterial adhesion to colonic epithelial cells through the interaction with bacterial chitin-binding protein. Laboratory Investigation, 2008, 88, 883-895.	1.7	88

#	Article	IF	CITATIONS
37	T-cell receptor ligation by peptide/MHC induces activation of a caspase in immature thymocytes: the molecular basis of negative selection. EMBO Journal, 1997, 16, 2282-2293.	3.5	87
38	Carbohydrate-binding motif in chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells. Clinical Immunology, 2011, 140, 268-275.	1.4	85
39	CYLD Proteolysis Protects Macrophages from TNF-Mediated Auto-necroptosis Induced by LPS and Licensed by Type I IFN. Cell Reports, 2016, 15, 2449-2461.	2.9	83
40	Colonic epithelial functional phenotype varies with type and phase of experimental colitis. Gastroenterology, 2003, 125, 148-161.	0.6	82
41	Recent updates on the basic mechanisms and pathogenesis of inflammatory bowel diseases in experimental animal models. Intestinal Research, 2020, 18, 151-167.	1.0	82
42	Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflammatory Bowel Diseases, 2011, 17, 532-542.	0.9	80
43	Potential role of chitinase 3-like-1 in inï¬,ammationassociated carcinogenic changes of epithelial cells. World Journal of Gastroenterology, 2009, 15, 5249.	1.4	79
44	Chitinase 3-Like-1 Expression in Colonic Epithelial Cells as a Potentially Novel Marker for Colitis-Associated Neoplasia. American Journal of Pathology, 2011, 179, 1494-1503.	1.9	74
45	Distinct structural and functional epitopes of the αEβ7 integrin. European Journal of Immunology, 1994, 24, 2832-2841.	1.6	72
46	Chitinase 3-like 1 induces survival and proliferation of intestinal epithelial cells during chronic inflammation and colitis-associated cancer by regulating S100A9. Oncotarget, 2015, 6, 36535-36550.	0.8	72
47	MyD88-Dependent TLR1/2 Signals Educate Dendritic Cells with Gut-Specific Imprinting Properties. Journal of Immunology, 2011, 187, 141-150.	0.4	70
48	Mast cells regulate IFN-Î ³ expression in the skin and circulating IgE levels in allergen-induced skin inflammation. Journal of Allergy and Clinical Immunology, 2002, 109, 106-113.	1.5	67
49	Immune Networks in Animal Models of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2003, 9, 246-259.	0.9	67
50	Toll-Like Receptor 4-Mediated Regulation of Spontaneous Helicobacter-Dependent Colitis in IL-10–Deficient Mice. Gastroenterology, 2009, 137, 1380-1390.e3.	0.6	61
51	An obligate role for T-cell receptor αβ+ T cells but not T-cell receptor γδ+ T cells, B cells, or CD40/CD40L interactions in a mouse model of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2001, 107, 359-366.	1.5	60
52	Constitutive Bcl-2 Expression during Immunoglobulin Heavy Chain–Promoted B Cell Differentiation Expands Novel Precursor B Cells. Immunity, 1997, 6, 23-33.	6.6	52
53	Alteration of a polyclonal to an oligoclonal immune response to cecal aerobic bacterial antigens in TCRα mutant mice with inflammatory bowel disease. International Immunology, 1996, 8, 1387-1394.	1.8	50
54	TNF Receptor Type I-Dependent Activation of Innate Responses to Reduce Intestinal Damage-Associated Mortality. Gastroenterology, 2008, 134, 470-480.	0.6	50

#	Article	IF	CITATIONS
55	Dependence of intestinal granuloma formation on unique myeloid DC-like cells. Journal of Clinical Investigation, 2007, 117, 605-615.	3.9	49
56	Limited CD4 T-cell diversity associated with colitis in T-cell receptor α mutant mice requires a T helper 2 environment. Gastroenterology, 2000, 119, 983-995.	0.6	47
57	Chitin microparticles for the control of intestinal inflammation. Inflammatory Bowel Diseases, 2012, 18, 1698-1710.	0.9	47
58	p40 <i>phox</i> Expression Regulates Neutrophil Recruitment and Function during the Resolution Phase of Intestinal Inflammation. Journal of Immunology, 2012, 189, 3631-3640.	0.4	46
59	Oral caffeine administration ameliorates acute colitis by suppressing chitinase 3-like 1 expression in intestinal epithelial cells. Journal of Gastroenterology, 2014, 49, 1206-1216.	2.3	41
60	Spontaneous Chronic Colitis in TCRα-Mutant Mice; an Experimental Model of Human Ulcerative Colitis. International Reviews of Immunology, 2000, 19, 123-138.	1.5	40
61	Roles of galectins in inflammatory bowel disease. World Journal of Gastroenterology, 2008, 14, 5133.	1.4	40
62	A unique B2 B cell subset in the intestine. Journal of Experimental Medicine, 2008, 205, 1343-1355.	4.2	39
63	Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia. Journal of Leukocyte Biology, 2011, 90, 167-176.	1.5	38
64	Genetically engineered mouse models for studying inflammatory bowel disease. Journal of Pathology, 2016, 238, 205-219.	2.1	38
65	Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 1127.	1.4	33
66	Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells. Journal of Experimental Medicine, 2012, 209, 2383-2394.	4.2	32
67	Intestinal heat shock protein 110 regulates expression of CD1d on intestinal epithelial cells. Journal of Clinical Investigation, 2003, 112, 745-754.	3.9	32
68	DNA methylation in inflammatory bowel disease and beyond. World Journal of Gastroenterology, 2013, 19, 5238.	1.4	31
69	Chitinase 3-like 1 Synergistically Activates IL6-mediated STAT3 Phosphorylation in Intestinal Epithelial Cells in Murine Models of Infectious Colitis. Inflammatory Bowel Diseases, 2014, 20, 835-846.	0.9	30
70	Blocking inducible co-stimulator in the absence of CD28 impairs Th1 and CD25+ regulatory T cells in murine colitis. International Immunology, 2004, 16, 205-213.	1.8	29
71	Double-positive T cell receptorhigh thymocytes are resistant to peptide/major histocompatibility complex ligand-induced negative selection. European Journal of Immunology, 1997, 27, 2279-2289.	1.6	28
72	Recent Advancement in Understanding Colitis-associated Tumorigenesis. Inflammatory Bowel Diseases, 2014, 20, 2115-2123.	0.9	25

#	Article	IF	CITATIONS
73	Is the sugar always sweet in intestinal inflammation?. Immunologic Research, 2007, 37, 47-60.	1.3	24
74	Mechanistic roles of epithelial and immune cell signaling during the development of colitis-associated cancer. Cancer Research Frontiers, 2016, 2, 1-21.	0.2	24
75	Chitinase 3-like-1 is a therapeutic target that mediates the effects of aging in COVID-19. JCI Insight, 2021, 6, .	2.3	23
76	Essential role for Vav1 in activation, but not development, of gammadelta T cells. International Immunology, 2003, 15, 215-221.	1.8	22
77	Role of the CD5 molecule on TCR gammadelta T cell-mediated immune functions: development of germinal centers and chronic intestinal inflammation. International Immunology, 2003, 15, 97-108.	1.8	21
78	New models of chronic intestinal inflammation. Current Opinion in Gastroenterology, 1994, 10, 633-638.	1.0	16
79	Glucocorticoidâ€induced TNF receptor familyâ€related protein ligand regulates the migration of monocytes to the inflamed intestine. FASEB Journal, 2014, 28, 474-484.	0.2	12
80	Lessons for human inflammatory bowel disease from experimental models. Current Opinion in Gastroenterology, 1999, 15, 285.	1.0	12
81	High Endogenous Expression of Chitinase 3-Like 1 and Excessive Epithelial Proliferation with Colonic Tumor Formation in MOLF/EiJ Mice. PLoS ONE, 2015, 10, e0139149.	1.1	8
82	Landscape of inflammatory bowel disease in Singapore. Intestinal Research, 2022, 20, 291-296.	1.0	7
83	Is the sugar always sweet in intestinal inflammation?. Immunologic Research, 2007, 37, 47-60.	1.3	2
84	Glycosylated chitinase 3-like 1 protein and chitin-binding motif of potentially pathogenic E. coli play a critical role in host-microbial interactions. Inflammatory Bowel Diseases, 2011, 17, S80.	0.9	0
85	Biological Analyses-Derived Translational Findings in the T Cell Receptor Alpha Chain Knockout Mouse as an Experimental Model for Ulcerative Colitis. International Journal of Translational Medicine, 2021, 1, 187-204.	0.1	0