Sally Lowell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4319942/publications.pdf Version: 2024-02-01

SALLYLOWELL

#	Article	IF	CITATIONS
1	Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Medicine, 2012, 18, 572-579.	15.2	624
2	Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Current Biology, 2000, 10, 491-500.	1.8	423
3	Deregulation of Dorsoventral Patterning by FGF Confers Trilineage Differentiation Capacity on CNS Stem Cells In Vitro. Neuron, 2003, 40, 485-499.	3.8	293
4	Notch Promotes Neural Lineage Entry by Pluripotent Embryonic Stem Cells. PLoS Biology, 2006, 4, e121.	2.6	234
5	Distinct Wnt-driven primitive streak-like populations reflect <i>in vivo</i> lineage precursors. Development (Cambridge), 2014, 141, 1209-1221.	1.2	215
6	Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature, 2020, 583, 585-589.	13.7	150
7	Epidermal stem cells. Journal of Pathology, 2002, 197, 479-491.	2.1	143
8	Polarity Reversal by Centrosome Repositioning Primes Cell Scattering during Epithelial-to-Mesenchymal Transition. Developmental Cell, 2017, 40, 168-184.	3.1	89
9	Neural Stem Cells, Neurons, and Glia. Methods in Enzymology, 2006, 418, 151-169.	0.4	68
10	Bone morphogenic protein signalling suppresses differentiation of pluripotent cells by maintaining expression of E-Cadherin. ELife, 2013, 2, e01197.	2.8	58
11	Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484.	2.9	56
12	Delta regulates keratinocyte spreading and motility independently of differentiation. Mechanisms of Development, 2001, 107, 133-140.	1.7	54
13	Geometrical confinement controls the asymmetric patterning of Brachyury in cultures of pluripotent cells. Development (Cambridge), 2018, 145, .	1.2	44
14	Evidence for evolutionary divergence of activity-dependent gene expression in developing neurons. ELife, 2016, 5, .	2.8	42
15	Hes1 Desynchronizes Differentiation of Pluripotent Cells by Modulating STAT3 Activity. Stem Cells, 2013, 31, 1511-1522.	1.4	36
16	Nessys: A new set of tools for the automated detection of nuclei within intact tissues and dense 3D cultures. PLoS Biology, 2019, 17, e3000388.	2.6	36
17	Atoh1 in sensory hair cell development: constraints and cofactors. Seminars in Cell and Developmental Biology, 2017, 65, 60-68.	2.3	32
18	BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. ELife, 2018, 7, .	2.8	32

SALLY LOWELL

#	Article	IF	CITATIONS
19	Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression. Developmental Biology, 2015, 397, 56-66.	0.9	25
20	N-cadherin stabilises neural identity by dampening anti-neural signals. Development (Cambridge), 2019, 146, .	1.2	17
21	The transcription factor E2A drives neural differentiation in pluripotent cells. Development (Cambridge), 2020, 147, .	1.2	15
22	Cadherins in early neural development. Cellular and Molecular Life Sciences, 2021, 78, 4435-4450.	2.4	13
23	ld1 Stabilizes Epiblast Identity by Sensing Delays in Nodal Activation and Adjusting the Timing of Differentiation. Developmental Cell, 2019, 50, 462-477.e5.	3.1	12
24	Notch signalling: You make me feel so glial. Current Biology, 2000, 10, R595-R597.	1.8	11
25	SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions <i>in vitro</i> and <i>in vivo</i> . Development (Cambridge), 2022, 149, .	1.2	11
26	Haematopoietic differentiation is inhibited when Notch activity is enhanced in FLK1+ mesoderm progenitors. Stem Cell Research, 2013, 11, 1273-1287.	0.3	9
27	Isolation by distance and a chromosomal cline in the Cayapa cytospecies of Simulium exiguum, the vector of human onchocerciasis in Ecuador. Genetica, 2005, 124, 41-59.	0.5	6
28	Biotic analogies for self-organising cities. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 268-286.	1.0	6
29	The future of conferences. Development (Cambridge), 2022, 149, .	1.2	4
30	TWIST1 interacts with $\hat{l}^2 \hat{l}$ -catenins during neural tube development and regulates fate transition in cranial neural crest cells. Development (Cambridge), 2022, 149, .	1.2	4
31	Mapping the Emergent Spatial Organization of Mammalian Cells using Micropatterns and Quantitative Imaging. Journal of Visualized Experiments, 2019, , .	0.2	3
32	The PLOS Biology XV Collection: 15 Years of Exceptional Science Highlighted across 12 Months. PLoS Biology, 2019, 17, e3000180.	2.6	1
33	You should always keep in touch with your friends: Community effects in biology. Nature Reviews Molecular Cell Biology, 2020, 21, 568-569.	16.1	1
34	In preprints: the problem of producing precise patterns. Development (Cambridge), 2022, 149, .	1.2	1
35	Neurobiology. Current Opinion in Neurobiology, 2001, 11, 259-266.	2.0	0
36	Agent-Based Modelling of Pattern Formation in Pluripotent Stem Cells: Initial Experiments and Results. , 2018, , .		0