
Shi-Wen Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4319369/publications.pdf Version: 2024-02-01

SHLWEN HUANC

#	Article	IF	CITATIONS
1	Reduction-active Fe3O4-loaded micelles with aggregation- enhanced MRI contrast for differential diagnosis of Neroglioma. Biomaterials, 2021, 268, 120531.	11.4	26
2	Dual-step irradiation strategy to sequentially destroy singlet oxygen-responsive polymeric micelles and boost photodynamic cancer therapy. Biomaterials, 2021, 275, 120959.	11.4	19
3	Biotinylated and fluorophore-incorporated polymeric mixed micelles for tumor cell-specific turn-on fluorescence imaging of Al ³⁺ . Journal of Materials Chemistry B, 2020, 8, 3557-3565.	5.8	8
4	Effect of Poly(ethylene glycol) (PEG) Surface Density on the Fate and Antitumor Efficacy of Redox-Sensitive Hybrid Nanoparticles. ACS Biomaterials Science and Engineering, 2020, 6, 3975-3983.	5.2	16
5	An Oxidationâ€Enhanced Magnetic Resonance Imaging Probe for Visual and Specific Detection of Singlet Oxygen Generated in Photodynamic Cancer Therapy In Vivo. Advanced Healthcare Materials, 2020, 9, e2000533.	7.6	21
6	Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy. Theranostics, 2019, 9, 7033-7050.	10.0	38
7	Gadolinium-chelate functionalized bismuth nanotheranostic agent for inÂvivo MRI/CT/PAI imaging-guided photothermal cancer therapy. Biomaterials, 2018, 159, 37-47.	11.4	94
8	Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. Biomaterials Science, 2018, 6, 3096-3107.	5.4	53
9	Aggregation-Induced Emission (AIE) Polymeric Micelles for Imaging-Guided Photodynamic Cancer Therapy. Nanomaterials, 2018, 8, 921.	4.1	15
10	Turn-on fluorescent probe-encapsulated micelle as colloidally stable nano-chemosensor for highly selective detection of Al3+ in aqueous solution and living cell imaging. Sensors and Actuators B: Chemical, 2018, 271, 225-238.	7.8	26
11	Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy. Nanoscale, 2017, 9, 17044-17053.	5.6	52
12	Lipid-polymer hybrid nanoparticles with aggregation-induced emission (AIE) characteristic for imaging-guided drug delivery. Journal of Controlled Release, 2017, 259, e15.	9.9	0
13	Selenylsulfide Bond-Launched Reduction-Responsive Superparamagnetic Nanogel Combined of Acid-Responsiveness for Achievement of Efficient Therapy with Low Side Effect. ACS Applied Materials & Interfaces, 2017, 9, 30253-30257.	8.0	30
14	Two-component reduction-sensitive lipid–polymer hybrid nanoparticles for triggered drug release and enhanced in vitro and in vivo anti-tumor efficacy. Biomaterials Science, 2017, 5, 98-110.	5.4	26
15	Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment. International Journal of Nanomedicine, 2017, Volume 12, 1853-1862.	6.7	52
16	MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 6871-6882.	6.7	12
17	Near-infrared light-triggered theranostics for tumor-specific enhanced multimodal imaging and photothermal therapy. International Journal of Nanomedicine, 2017, Volume 12, 4467-4478.	6.7	28
18	Synergetic enhancement of antitumor efficacy with charge-reversal and reduction-sensitive polymer micelles. Polymer Chemistry, 2016, 7, 5113-5122.	3.9	21

SHI-WEN HUANG

#	Article	IF	CITATIONS
19	Lipid–polymer hybrid nanoparticles for the delivery of gemcitabine. Journal of Controlled Release, 2015, 213, e128-e129.	9.9	4
20	Anionic long circulating liposomes for hepatic targeted delivery of cisplatin. Journal of Controlled Release, 2015, 213, e72.	9.9	4
21	Folate-containing reduction-sensitive lipid–polymer hybrid nanoparticles for targeted delivery of doxorubicin. Biomaterials Science, 2015, 3, 655-664.	5.4	59
22	Co-delivery of doxorubicin and amphiphilic derivative of Gd-DTPA with lipid–polymer hybrid nanoparticles for simultaneous imaging and targeted therapy of cancer. Journal of Controlled Release, 2015, 213, e13-e14.	9.9	3
23	Sub-20 nm nontoxic aggregation-induced emission micellar fluorescent light-up probe for highly specific and sensitive mitochondrial imaging of hydrogen sulfide. Polymer Chemistry, 2015, 6, 5185-5189.	3.9	26
24	Reduction-sensitive micelles with sheddable PEG shells self-assembled from a Y-shaped amphiphilic polymer for intracellular doxorubicine release. Colloids and Surfaces B: Biointerfaces, 2015, 129, 137-145.	5.0	28
25	Doxorubicin-conjugated magnetic iron oxide nanoparticles for pH-sensitive and magnetic responsive drug delivery. Journal of Controlled Release, 2015, 213, e67.	9.9	5
26	Folic acid-conjugated iron oxide porous nanorods loaded with doxorubicin for targeted drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 120, 142-151.	5.0	38
27	Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials, 2013, 34, 3858-3869.	11.4	158
28	The effectiveness, cytotoxicity, and intracellular trafficking of nonviral vectors for gene delivery to bone mesenchymal stem cells. Journal of Bioactive and Compatible Polymers, 2013, 28, 204-217.	2.1	12
29	Highly efficient loading of amorphous paclitaxel in mesoporous hematite nanorods and their in vitro antitumor activity. Journal of Materials Chemistry B, 2013, 1, 1687.	5.8	10
30	Poly(<scp>L</scp> â€aspartamide)â€ <scp>B</scp> ased Reductionâ€ <scp>S</scp> ensitive Micelles as Nanocarriers to Improve Doxorubicin Content in Cell Nuclei and to Enhance Antitumor Activity. Macromolecular Bioscience, 2013, 13, 1036-1047.	4.1	21
31	Poly(amidoamine)s with pendant primary amines and flexible backbone for enhanced nonviral gene delivery: Transfection and intracellular trafficking. Journal of Biomedical Materials Research - Part A, 2012, 100A, 872-881.	4.0	15
32	Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary magnetoplexes: a novel strategy for magnetofection. Journal of Materials Chemistry, 2011, 21, 13306.	6.7	54
33	One-pot preparation of polyethylenimine-silica nanoparticles as serum-resistant gene delivery vectors: Intracellular trafficking and transfection. Journal of Materials Chemistry, 2011, 21, 10496.	6.7	18
34	Dendrimer modified magnetic iron oxide nanoparticle/dna/pei ternary complexes: A novel strategy for magnetofection. Journal of Controlled Release, 2011, 152, e159-e160.	9.9	29
35	Bioreducible polycationic micelles for in vitro gene delivery. Journal of Controlled Release, 2011, 152, e177-e179.	9.9	2
36	Biocleavable Polycationic Micelles as Highly Efficient Gene Delivery Vectors. Nanoscale Research Letters, 2010, 5, 1804-1811.	5.7	7

Shi-Wen Huang

#	Article	IF	CITATIONS
37	Novel Poly(amidoamine)s with Pendant Primary Amines as Highly Efficient Gene Delivery Vectors. Macromolecular Bioscience, 2010, 10, 384-392.	4.1	23
38	Improving Gene Delivery Efficiency of Bioreducible Poly(amidoamine)s via Grafting with Dendritic Poly(amidoamine)s. Macromolecular Bioscience, 2010, 10, 404-414.	4.1	43
39	Cytotoxicity and in vivo tissue compatibility of poly(amidoamine) with pendant aminobutyl group as a gene delivery vector. Biomaterials, 2010, 31, 4467-4476.	11.4	36
40	Transfection and intracellular trafficking characteristics for poly(amidoamine)s with pendant primary amine in the delivery of plasmid DNA to bone marrow stromal cells. Biomaterials, 2009, 30, 5825-5833.	11.4	30
41	Polyaspartamide-Based Oligo-ethylenimine Brushes with High Buffer Capacity and Low Cytotoxicity for Highly Efficient Gene Delivery. Bioconjugate Chemistry, 2009, 20, 440-446.	3.6	24
42	Preparation of temperatureâ€sensitive poly(<i>N</i> â€isopropylacrylamide)/βâ€cyclodextrinâ€grafted polyethylenimine hydrogels for drug delivery. Journal of Applied Polymer Science, 2008, 108, 3031-3037.	2.6	55
43	Recent Advances in Polyphosphoester and Polyphosphoramidate-Based Biomaterials. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 340-348.	1.6	42
44	Synthesis and <i>in vitro</i> Property Study of Polyaspartamides. Chinese Journal of Chemistry, 2007, 25, 1748-1753.	4.9	4
45	Tunable Film Degradation and Sustained Release of Plasmid DNA from Cleavable Polycation/Plasmid DNA Multilayers under Reductive Conditions. Small, 2007, 3, 636-643.	10.0	59
46	Poly(N-isopropylacrylamide) Nanoparticle-Incorporated PNIPAAm Hydrogels with Fast Shrinking Kinetics. Macromolecular Rapid Communications, 2005, 26, 1346-1350.	3.9	57
47	Novel temperature-sensitive, ?-cyclodextrin-incorporated poly(N-isopropylacrylamide) hydrogels for slow release of drug. Colloid and Polymer Science, 2005, 283, 461-464.	2.1	50
48	A novel sol–gel strategy to prepare temperature-sensitive hydrogel for encapsulation of protein. Colloid and Polymer Science, 2005, 284, 209-213.	2.1	15
49	In Vitro Gene Delivery Using Polyamidoamine Dendrimers with a Trimesyl Coreâ€. Biomacromolecules, 2005, 6, 341-350.	5.4	103
50	Preparation and properties of poly(N -isopropylacrylamide)/poly(N -isopropylacrylamide) interpenetrating polymer networks for drug delivery. Journal of Polymer Science Part A, 2004, 42, 1249-1254.	2.3	71
51	Preparation and Characterization of Novel Temperature Sensitive Poly(N-isopropylacrylamide-co-acryloyl beta-cyclodextrin) Hydrogels with Fast Shrinking Kinetics. Macromolecular Chemistry and Physics, 2004, 205, 107-113.	2.2	46
52	Water-Soluble and Nonionic Polyphosphoester:Â Synthesis, Degradation, Biocompatibility and Enhancement of Gene Expression in Mouse Muscle. Biomacromolecules, 2004, 5, 306-311.	5.4	78
53	Temperature-Sensitive Poly(N-isopropylacrylamide) Hydrogels with Macroporous Structure and Fast Response Rate. Macromolecular Rapid Communications, 2003, 24, 447-451.	3.9	105
54	Effect of side-chain structures on gene transfer efficiency of biodegradable cationic polyphosphoesters. International Journal of Pharmaceutics, 2003, 265, 75-84.	5.2	44

#	Article	IF	CITATIONS
55	Synthesis, Characterization and In Vitro Cytotoxicity of Poly[(5-benzyloxy-trimethylene) Tj ETQq1 1 0.784314 rgE	BT/Qverloo 2.2	ck 10 Tf 50
56	Insertion of Dichlorocarbene into CB Bond of Borinates under Liquidâ€Liquid Phase Transfer Catalysis Conditions: A Convenient Preparation of Unsymmetrical Ketones. Chinese Journal of Chemistry, 2001, 19, 202-204.	4.9	1