Maxim S Gorbunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4319335/publications.pdf

Version: 2024-02-01

933447 888059 50 349 10 17 citations g-index h-index papers 50 50 50 210 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Platform solutions for the design and development of reliable trusted electronic components. Bezopasnost \hat{E}^1 Informacionnyh Tehnologij, 2022, 29, 85-99.	0.1	O
2	Total Ionizing Dose Tolerance Estimation for an All-MOS Temperature-Insensitive Voltage Divider. , 2022, , .		0
3	Design-Stage Hardening of 65-nm CMOS Standard Cells Against Multiple Events. IEEE Transactions on Nuclear Science, 2021, 68, 1712-1718.	2.0	O
4	ĐĐ²Đ¾Đ»ÑŽÑ†Đ,Ñ•Ñ€Đ°ĐƊ,Đ°Ñ†Đ,Đ¾Đ½Đ½Đ½Đ¾Đ3Đ¾ Đ¿Đ¾Đ²ĐμĐƊμĐ½Đ,Ñ•ÑÑƒĐ±Đ¼Đ,Đ°Ñ€Đ¾ÑĐ»	е Ð :Ñ,Ñ€	Đ¾ 0 Đ½Đ½Ñ∙
5	Design of fault-tolerant microprocessors for space applications. Acta Astronautica, 2019, 163, 252-258.	3.2	8
6	Standard Verification Flow Compatible Layout-Aware Fault Injection Technique for Single Event Effects Tolerant ASIC Design., 2019,,.		0
7	Physics-based modeling of TID induced global static leakage in different CMOS circuits. Microelectronics Reliability, 2018, 84, 181-186.	1.7	12
8	On board electronic devices safety provided by DICE-based Muller C-elements. Acta Astronautica, 2018, 150, 28-32.	3.2	6
9	Circuit-Level Layout-Aware Modeling of Single-Event Effects in 65-nm CMOS ICs. IEEE Transactions on Nuclear Science, 2018, 65, 1914-1919.	2.0	13
10	Direct Experimental Performance Comparison of Two Microprocessors for the Efficiency Evaluation of Single Event Effects Mitigation Techniques. , 2018, , .		1
11	Layout-aware Soft Error Rate Estimation Technique for Integrated Circuits under the Environment with Energetic Charged Particles. Journal of Physics: Conference Series, 2017, 798, 012209.	0.4	2
12	High-energy gamma-ray studying with GAMMA-400 after Fermi-LAT. Journal of Physics: Conference Series, 2017, 798, 012011.	0.4	5
13	Modifications of a method for low energy gamma-ray incident angle reconstruction in the GAMMA-400 gamma-ray telescope. Journal of Physics: Conference Series, 2017, 798, 012012.	0.4	O
14	New stage in high-energy gamma-ray studies with GAMMA-400 after Fermi-LAT. EPJ Web of Conferences, 2017, 145, 06001.	0.3	1
15	Status of the scientific data acquisition system for the GAMMA-400 space telescope mission. Journal of Physics: Conference Series, 2017, 798, 012009.	0.4	O
16	Design Trade-off Between Performance and Fault-Tolerance of Space Onboard Computers. Journal of Physics: Conference Series, 2017, 798, 012189.	0.4	1
17	Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements. Journal of Physics: Conference Series, 2016, 675, 032010.	0.4	2
18	The scientific data acquisition system of the GAMMA-400 space project. Journal of Physics: Conference Series, 2016, 675, 032014.	0.4	2

#	Article	IF	CITATIONS
19	The structure of control and data transfer management system for the GAMMA-400 scientific complex. Journal of Physics: Conference Series, 2016, 675, 032013.	0.4	0
20	Total ionizing dose effects modeling in common-gate tri-gate FinFETs using Verilog-A., 2016,,.		0
21	Layout-aware simulation of soft errors in sub-100 nm integrated circuits. Proceedings of SPIE, 2016, , .	0.8	1
22	Semi-Empirical Method for Estimation of Single-Event Upset Cross Section for SRAM DICE Cells. IEEE Transactions on Nuclear Science, 2016, 63, 2250-2256.	2.0	7
23	The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations. Journal of Physics: Conference Series, 2016, 675, 032009.	0.4	4
24	DICE-based muller C-elements for soft error tolerant asynchronous ICs. , 2016, , .		10
25	Space Î ³ -observatory GAMMA-400 Current Status and Perspectives. Physics Procedia, 2015, 74, 177-182.	1.2	8
26	Separation of electrons and protons in the GAMMA-400 gamma-ray telescope. Advances in Space Research, 2015, 56, 1538-1545.	2.6	10
27	Multiple Cell Upset Cross-Section Uncertainty in Nanoscale Memories: Microdosimetric Approach. , 2015, , .		9
28	Temperature Dependence of MCU Sensitivity in 65Ânm CMOS SRAM. IEEE Transactions on Nuclear Science, 2015, 62, 2860-2866.	2.0	24
29	Semi-Empirical Method for Estimation of Single-Event Upset Cross-Section for SRAM DICE Cells. , 2015, , .		2
30	Statistics and methodology of multiple cell upset characterization under heavy ion irradiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 775, 41-45.	1.6	14
31	The GAMMA-400 experiment: Status and prospects. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 417-420.	0.6	30
32	Radiation-induced mismatch enhancement in 65nm CMOS SRAM for space applications. Proceedings of SPIE, 2014, , .	0.8	0
33	Estimation technique for SET-tolerance of combinational ICs. Proceedings of SPIE, 2014, , .	0.8	1
34	SET Tolerance of 65Ânm CMOS Majority Voters: A Comparative Study. IEEE Transactions on Nuclear Science, 2014, 61, 1597-1602.	2.0	27
35	Microdose Induced Drain Leakage Effects in Power Trench MOSFETs: Experiment and Modeling. IEEE Transactions on Nuclear Science, 2014, 61, 1531-1536.	2.0	13
36	Design of 65Ânm CMOS SRAM for Space Applications: A Comparative Study. IEEE Transactions on Nuclear Science, 2014, 61, 1575-1582.	2.0	41

3

#	Article	IF	CITATIONS
37	Design of 65 nm CMOS SRAM for space applications: A comparative study. , 2013, , .		1
38	Fault-Tolerant SOI Microprocessor for Space Applications. IEEE Transactions on Nuclear Science, 2013, 60, 2762-2767.	2.0	9
39	SET tolerance of 65 nm CMOS majority voters: A comparative study. , 2013, , .		1
40	Microdose induced drain leakage effects in power trench MOSFETs: Experiment and modeling. , 2013, , .		0
41	Analysis of SOI CMOS Microprocessor's SEE Sensitivity: Correlation of the Results Obtained by Different Test Methods. IEEE Transactions on Nuclear Science, 2012, 59, 1130-1135.	2.0	16
42	Analysis of SOI CMOS microprocessor's SEE sensitivity: Correlation of the results obtained by different test methods. , $2011, \ldots$		5
43	Verilog-A Modeling of Radiation-Induced Mismatch Enhancement. IEEE Transactions on Nuclear Science, 2011, 58, 785-792.	2.0	10
44	Modeling of Radiation-Induced Leakage and Low Dose-Rate Effects in Thick Edge Isolation of Modern MOSFETs. IEEE Transactions on Nuclear Science, 2009, 56, 2230-2236.	2.0	42
45	Radiation-hardening-by-design with circuit-level modeling of total ionizing dose effects in modern CMOS technologies. Proceedings of SPIE, 2009, , .	0.8	0
46	Multi-scale modeling of low dose-rate total dose effects in advanced microelectronics. , 2008, , .		0
47	<title>Radiation induced leakage due to stochastic charge trapping in isolation layers of nanoscale
MOSFETs</title> ., 2008, , .		7
48	<title>Parasitic bipolar effect in modern SOI CMOS technologies</title> . Proceedings of SPIE, 2008, , .	0.8	0
49	<title>Compact physical modeling of fully depleted SOI MOSFET</title> ., 2006, , .		2
50	Diffusion-Drift Model of Fully Depleted SOI MOSFET., 0,,.		2