
## John H Livingston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4319003/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nature Genetics, 2006, 38, 917-920.                                                                                | 9.4 | 752       |
| 2  | Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature.<br>Nature Genetics, 2012, 44, 1243-1248.                                                                                           | 9.4 | 712       |
| 3  | Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nature Genetics, 2014, 46, 503-509.                                                         | 9.4 | 490       |
| 4  | Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with<br>mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet<br>Neurology, The, 2013, 12, 1159-1169. | 4.9 | 473       |
| 5  | Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nature Genetics, 2012, 44, 338-342.                                                                                                         | 9.4 | 234       |
| 6  | Intracranial calcification in childhood: a review of aetiologies and recognizable phenotypes.<br>Developmental Medicine and Child Neurology, 2014, 56, 612-626.                                                                       | 1.1 | 132       |
| 7  | Neurologic Phenotypes Associated with Mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi–GoutiÔres Syndrome and Beyond. Neuropediatrics, 2016, 47, 355-360.                                          | 0.3 | 127       |
| 8  | A type I interferon signature identifies bilateral striatal necrosis due to mutations in <i>ADAR1</i> .<br>Journal of Medical Genetics, 2014, 51, 76-82.                                                                              | 1.5 | 118       |
| 9  | Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nature Genetics, 2016, 48, 1185-1192.                                                                                     | 9.4 | 114       |
| 10 | cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing.<br>Nature Genetics, 2020, 52, 1364-1372.                                                                                            | 9.4 | 105       |
| 11 | Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in <i>STAT2</i> . Science Immunology, 2019, 4, .                                                                           | 5.6 | 80        |
| 12 | Mutations in ADAR1, IFIH1, and RNASEH2B Presenting As Spastic Paraplegia. Neuropediatrics, 2014, 45, 386-391.                                                                                                                         | 0.3 | 72        |
| 13 | Spondyloenchondrodysplasia Due to Mutations in ACP5: A Comprehensive Survey. Journal of Clinical<br>Immunology, 2016, 36, 220-234.                                                                                                    | 2.0 | 71        |
| 14 | Treatments in Aicardi–GoutiÃ <sup>~</sup> res syndrome. Developmental Medicine and Child Neurology, 2020, 62,<br>42-47.                                                                                                               | 1.1 | 70        |
| 15 | Recognizable phenotypes associated with intracranial calcification. Developmental Medicine and Child Neurology, 2013, 55, 46-57.                                                                                                      | 1.1 | 68        |
| 16 | Genetic and phenotypic spectrum associated with IFIH1 gainâ€ofâ€function. Human Mutation, 2020, 41,<br>837-849.                                                                                                                       | 1.1 | 63        |
| 17 | Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease.<br>Neuropediatrics, 2017, 48, 166-184.                                                                                                    | 0.3 | 62        |
| 18 | Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification. American<br>Journal of Human Genetics, 2020, 106, 412-421.                                                                               | 2.6 | 47        |

JOHN H LIVINGSTON

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Novel Inherited Mutation in the Voltage Sensor Region of SCN1A Is Associated With Panayiotopoulos<br>Syndrome in Siblings and Generalized Epilepsy With Febrile Seizures Plus. Journal of Child Neurology,<br>2009, 24, 503-508. | 0.7 | 41        |
| 20 | Leukoencephalopathy with Calcifications and Cysts: A Purely Neurological Disorder Distinct from<br>Coats Plus. Neuropediatrics, 2014, 45, 175-182.                                                                                 | 0.3 | 41        |
| 21 | Early-Onset Aicardi-Goutières Syndrome. Journal of Child Neurology, 2015, 30, 1343-1348.                                                                                                                                           | 0.7 | 33        |
| 22 | Clinical, radiological and possible pathological overlap of cystic leukoencephalopathy without<br>megalencephaly and Aicardi-Goutières syndrome. European Journal of Paediatric Neurology, 2016, 20,<br>604-610.                   | 0.7 | 29        |
| 23 | COL4A1-Related Disease: Raised Creatine Kinase and Cerebral Calcification as Useful Pointers.<br>Neuropediatrics, 2012, 43, 283-288.                                                                                               | 0.3 | 20        |
| 24 | Cerebral hypomyelination associated with biallelic variants of <i>FIG4</i> . Human Mutation, 2019, 40, 619-630.                                                                                                                    | 1.1 | 18        |
| 25 | Basal Ganglia Calcification in a Patient With Beta-Propeller Protein-Associated Neurodegeneration.<br>Pediatric Neurology, 2014, 51, 843-845.                                                                                      | 1.0 | 17        |
| 26 | Biallelic mutations in NRROS cause an early onset lethal microgliopathy. Acta Neuropathologica,<br>2020, 139, 947-951.                                                                                                             | 3.9 | 17        |
| 27 | Leukoencephalopathy with calcifications and cysts: Genetic and phenotypic spectrum. American<br>Journal of Medical Genetics, Part A, 2021, 185, 15-25.                                                                             | 0.7 | 15        |
| 28 | Intracranial calcification in early infantile Krabbe disease: nothing new under the sun. Developmental<br>Medicine and Child Neurology, 2012, 54, 376-379.                                                                         | 1.1 | 14        |
| 29 | Autosomal-dominant early-onset spastic paraparesis with brain calcification due to <i>IFIH1</i> gain-of-function. Human Mutation, 2018, 39, 1076-1080.                                                                             | 1.1 | 8         |
| 30 | Clinical and radiological characterization of novel <scp><i>FIG4</i></scp> â€related combined system disease with neuropathy. Clinical Genetics, 2020, 98, 147-154.                                                                | 1.0 | 8         |
| 31 | An unusual neuroimaging finding and response to immunotherapy in a child with genetically<br>confirmed vanishing white matter disease. European Journal of Paediatric Neurology, 2017, 21, 410-413.                                | 0.7 | 7         |
| 32 | Surveillance for variant CJD: should more children with neurodegenerative diseases have autopsies?.<br>Archives of Disease in Childhood, 2019, 104, 360-365.                                                                       | 1.0 | 7         |
| 33 | Bradycardia without associated hypertension: a common sign of ventriculo-peritoneal shunt<br>malfunction. Child's Nervous System, 2011, 27, 729-733.                                                                               | 0.6 | 6         |
| 34 | Whole Exon Deletion in the GFAP Gene Is a Novel Molecular Mechanism Causing Alexander Disease.<br>Neuropediatrics, 2018, 49, 118-122.                                                                                              | 0.3 | 6         |
| 35 | Missense mutation of MAL causes a rare leukodystrophy similar to Pelizaeus-Merzbacher disease.<br>European Journal of Human Genetics, 2022, 30, 860-864.                                                                           | 1.4 | 4         |
| 36 | Biallelic Mutations in MTPAP Associated with a Lethal Encephalopathy. Neuropediatrics, 2020, 51, 178-184.                                                                                                                          | 0.3 | 3         |

JOHN H LIVINGSTON

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Leukoencephalopathy with calcification and cysts: A cerebral microangiopathy caused by mutations in SNORD118. Journal of the Neurological Sciences, 2017, 372, 443.      | 0.3 | 2         |
| 38 | Poems by children as patient-reported outcomes. Developmental Medicine and Child Neurology, 2012, 54, 52-53.                                                             | 1.1 | 1         |
| 39 | Common pathways of intracranial calcification and the role of the pericyte: insights from neuropathology. Developmental Medicine and Child Neurology, 2014, 56, 924-925. | 1.1 | 1         |
| 40 | CNS infections. Journal of Pediatric Neurology, 2015, 08, 089-090.                                                                                                       | 0.0 | 0         |
| 41 | Next generation child neurologists. Developmental Medicine and Child Neurology, 2015, 57, 4-5.                                                                           | 1.1 | 0         |