
## Francesca Spyrakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4318599/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Target Flexibility: An Emerging Consideration in Drug Discovery and Design. Journal of Medicinal Chemistry, 2008, 51, 6237-6255.                                                                                                               | 2.9 | 280       |
| 2  | Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design.<br>ACS Infectious Diseases, 2019, 5, 9-34.                                                                                               | 1.8 | 123       |
| 3  | Simple, Intuitive Calculations of Free Energy of Binding for Proteinâ^'Ligand Complexes. 3. The Free<br>Energy Contribution of Structural Water Molecules in HIV-1 Protease Complexes. Journal of<br>Medicinal Chemistry, 2004, 47, 4507-4516. | 2.9 | 112       |
| 4  | The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. Journal of Medicinal Chemistry, 2017, 60, 6781-6827.                                                                                                 | 2.9 | 111       |
| 5  | Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Archives of Biochemistry and Biophysics, 2015, 583, 105-119.                            | 1.4 | 101       |
| 6  | Robust Classification of "Relevant―Water Molecules in Putative Protein Binding Sites. Journal of<br>Medicinal Chemistry, 2008, 51, 1063-1067.                                                                                                  | 2.9 | 93        |
| 7  | Protein Flexibility and Ligand Recognition: Challenges for Molecular Modeling. Current Topics in<br>Medicinal Chemistry, 2011, 11, 192-210.                                                                                                    | 1.0 | 86        |
| 8  | Mapping the Energetics of Water–Protein and Water–Ligand Interactions with the "Natural―HINT<br>Forcefield: Predictive Tools for Characterizing the Roles of Water in Biomolecules. Journal of<br>Molecular Biology, 2006, 358, 289-309.       | 2.0 | 85        |
| 9  | Design of <i>O</i> -Acetylserine Sulfhydrylase Inhibitors by Mimicking Nature. Journal of Medicinal<br>Chemistry, 2010, 53, 345-356.                                                                                                           | 2.9 | 75        |
| 10 | A Pipeline To Enhance Ligand Virtual Screening: Integrating Molecular Dynamics and Fingerprints for Ligand and Proteins. Journal of Chemical Information and Modeling, 2015, 55, 2256-2274.                                                    | 2.5 | 65        |
| 11 | The consequences of scoring docked ligand conformations using free energy correlations. European<br>Journal of Medicinal Chemistry, 2007, 42, 921-933.                                                                                         | 2.6 | 58        |
| 12 | Energetics of the protein-DNA-water interaction. BMC Structural Biology, 2007, 7, 4.                                                                                                                                                           | 2.3 | 57        |
| 13 | Bound Water at Protein-Protein Interfaces: Partners, Roles and Hydrophobic Bubbles as a Conserved<br>Motif. PLoS ONE, 2011, 6, e24712.                                                                                                         | 1.1 | 57        |
| 14 | The Reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is Controlled by the Distal HisE7 and Internal Hydrophobic Cavities. Journal of the American Chemical Society, 2007, 129, 2880-2889.                                         | 6.6 | 54        |
| 15 | Ligand migration through the internal hydrophobic cavities in human neuroglobin. Proceedings of the United States of America, 2009, 106, 18984-18989.                                                                                          | 3.3 | 47        |
| 16 | Energyâ€based prediction of amino acidâ€nucleotide base recognition. Journal of Computational<br>Chemistry, 2008, 29, 1955-1969.                                                                                                               | 1.5 | 44        |
| 17 | A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library<br>Screening Guided by Analysis of Protein Dynamics. ACS Pharmacology and Translational Science, 2021,<br>4, 1079-1095.                          | 2.5 | 44        |
| 18 | lsozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS ONE, 2013, 8,<br>e77558.                                                                                                                            | 1.1 | 43        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to<br>Antibacterial Development. International Journal of Molecular Sciences, 2020, 21, 2145.                                                 | 1.8 | 42        |
| 20 | The multifaceted pyridoxal 5â€2-phosphate-dependent O-acetylserine sulfhydrylase. Biochimica Et<br>Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1497-1510.                                                                | 1.1 | 39        |
| 21 | A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Letters, 2020, 470, 115-125.                                                   | 3.2 | 39        |
| 22 | Structure-Based Virtual Screening for the Discovery of Novel Inhibitors of New Delhi<br>Metallo-β-lactamase-1. ACS Medicinal Chemistry Letters, 2018, 9, 45-50.                                                                     | 1.3 | 38        |
| 23 | Fine tuning of the active site modulates specificity in the interaction of O-acetylserine sulfhydrylase<br>isozymes with serine acetyltransferase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013,<br>1834, 169-181. | 1.1 | 35        |
| 24 | Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Scientific Reports, 2017, 7, 17716.                                                                          | 1.6 | 35        |
| 25 | ComputationalÂTitrationÂAnalysisÂofÂaÂMultiproticÂHIV-1ÂProteaseâ^'LigandÂComplex. Journal of the American<br>Chemical Society, 2004, 126, 11764-11765.                                                                             | 6.6 | 34        |
| 26 | Serine racemase: a key player in neuron activity and in neuropathologies. Frontiers in Bioscience -<br>Landmark, 2013, 18, 1112.                                                                                                    | 3.0 | 34        |
| 27 | Getting it right: modeling of pH, solvent and "nearly―everything else in virtual screening of<br>biological targets. Journal of Molecular Graphics and Modelling, 2004, 22, 479-486.                                                | 1.3 | 32        |
| 28 | Different roles of protein dynamics and ligand migration in non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. Gene, 2007, 398, 224-233.                                                                            | 1.0 | 32        |
| 29 | A novel Bim-BH3-derived Bcl-XL inhibitor: Biochemical characterization, in vitro, in vivo and ex-vivo anti-leukemic activity. Cell Cycle, 2008, 7, 3211-3224.                                                                       | 1.3 | 32        |
| 30 | Geminate Rebinding in R-State Hemoglobin:Â Kinetic and Computational Evidence for Multiple<br>Hydrophobic Pockets. Journal of the American Chemical Society, 2005, 127, 17427-17432.                                                | 6.6 | 29        |
| 31 | From Experiments to a Fast Easy-to-Use Computational Methodology to Predict Human Aldehyde<br>Oxidase Selectivity and Metabolic Reactions. Journal of Medicinal Chemistry, 2018, 61, 360-371.                                       | 2.9 | 29        |
| 32 | CO Rebinding Kinetics and Molecular Dynamics Simulations Highlight Dynamic Regulation of Internal<br>Cavities in Human Cytoglobin. PLoS ONE, 2013, 8, e49770.                                                                       | 1.1 | 28        |
| 33 | Ligand Migration in Nonsymbiotic Hemoglobin AHb1 from Arabidopsis thaliana. Journal of Physical<br>Chemistry B, 2007, 111, 12582-12590.                                                                                             | 1.2 | 27        |
| 34 | Decoding the Structural Basis For Carbapenem Hydrolysis By Class A β-lactamases: Fishing For A<br>Pharmacophore. Current Drug Targets, 2016, 17, 983-1005.                                                                          | 1.0 | 27        |
| 35 | Targeting Cystalysin, a Virulence Factor of <i>Treponema denticolaâ€</i> Supported Periodontitis.<br>ChemMedChem, 2014, 9, 1501-1511.                                                                                               | 1.6 | 26        |
| 36 | Fluorescent Nitric Oxide Photodonors Based on BODIPY and Rhodamine Antennae. Chemistry - A<br>European Journal, 2019, 25, 11080-11084.                                                                                              | 1.7 | 26        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Label-free fiber optic optrode for the detection of class C β-lactamases expressed by drug resistant bacteria. Biomedical Optics Express, 2017, 8, 5191.                                                                    | 1.5 | 25        |
| 38 | Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Scientific Reports, 2020, 10, 12763.                                            | 1.6 | 25        |
| 39 | Theoretical Calculations of the Catalytic Triad in Short-Chain Alcohol Dehydrogenases/Reductases.<br>Biophysical Journal, 2008, 94, 1412-1427.                                                                              | 0.2 | 24        |
| 40 | The Inhibition of Extended Spectrum β-Lactamases: Hits and Leads. Current Medicinal Chemistry, 2014, 21, 1405-1434.                                                                                                         | 1.2 | 23        |
| 41 | Allosteric communication between alpha and beta subunits of tryptophan synthase: Modelling the open-closed transition of the alpha subunit. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1102-1109. | 1.1 | 22        |
| 42 | Expanding the chemical space of human serine racemase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4297-4303.                                                                                          | 1.0 | 22        |
| 43 | Comparing Drug Images and Repurposing Drugs with BioGPS and FLAPdock: The Thymidylate Synthase<br>Case. ChemMedChem, 2016, 11, 1653-1666.                                                                                   | 1.6 | 21        |
| 44 | Interaction of human hemoglobin and semi-hemoglobins with the Staphylococcus aureus hemophore<br>IsdB: a kinetic and mechanistic insight. Scientific Reports, 2019, 9, 18629.                                               | 1.6 | 21        |
| 45 | Structural Plasticity and Functional Implications of Internal Cavities in Distal Mutants of Type 1<br>Non-Symbiotic Hemoglobin AHb1 fromArabidopsis thaliana. Journal of Physical Chemistry B, 2009, 113,<br>16028-16038.   | 1.2 | 20        |
| 46 | Histidine E7 Dynamics Modulates Ligand Exchange between Distal Pocket and Solvent in AHb1 from<br><i>Arabidopsis thaliana</i> . Journal of Physical Chemistry B, 2011, 115, 4138-4146.                                      | 1.2 | 20        |
| 47 | Comparative mapping of on-targets and off-targets for the discovery of anti-trypanosomatid folate pathway inhibitors. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3215-3230.                              | 1.1 | 20        |
| 48 | Structure–activity relationships of strigolactones via a novel, quantitative in planta bioassay.<br>Journal of Experimental Botany, 2018, 69, 2333-2343.                                                                    | 2.4 | 20        |
| 49 | Novel peptide-conjugated nanomedicines for brain targeting: In vivo evidence. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2020, 28, 102226.                                                                     | 1.7 | 20        |
| 50 | Binding of Androgen- and Estrogen-Like Flavonoids to Their Cognate (Non)Nuclear Receptors: A<br>Comparison by Computational Prediction. Molecules, 2021, 26, 1613.                                                          | 1.7 | 20        |
| 51 | Oxygen binding to <i>Arabidopsis thaliana</i> AHb2 nonsymbiotic hemoglobin: evidence for a role in oxygen transport. IUBMB Life, 2011, 63, 355-362.                                                                         | 1.5 | 19        |
| 52 | Tools for building a comprehensive modeling system for virtual screening under real biological<br>conditions: The Computational Titration algorithm. Journal of Molecular Graphics and Modelling,<br>2006, 24, 434-439.     | 1.3 | 18        |
| 53 | Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular<br>dynamics simulations. Physical Chemistry Chemical Physics, 2013, 15, 10686.                                            | 1.3 | 18        |
| 54 | Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step. Organic and Biomolecular Chemistry, 2017, 15, 8218-8231.                                          | 1.5 | 18        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Strigolactones, from Plants to Human Health: Achievements and Challenges. Molecules, 2021, 26, 4579.                                                                                                                      | 1.7 | 18        |
| 56 | Oxygen and nitric oxide rebinding kinetics in nonsymbiotic hemoglobin AHb1 from <i>Arabidopsis<br/>thaliana</i> . IUBMB Life, 2011, 63, 1094-1100.                                                                        | 1.5 | 16        |
| 57 | Inhibition of the transcriptional repressor LexA: Withstanding drug resistance by inhibiting the bacterial mechanisms of adaptation to antimicrobials. Life Sciences, 2020, 241, 117116.                                  | 2.0 | 16        |
| 58 | How Computational Methods Try to Disclose the Estrogen Receptor Secrecy - Modeling the Flexibility.<br>Current Medicinal Chemistry, 2009, 16, 2987-3027.                                                                  | 1.2 | 15        |
| 59 | Ligand migration and hexacoordination in type 1 non-symbiotic rice hemoglobin. Biochimica Et<br>Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1042-1053.                                                         | 1.1 | 15        |
| 60 | A generator of peroxynitrite activatable with red light. Chemical Science, 2021, 12, 4740-4746.                                                                                                                           | 3.7 | 15        |
| 61 | Structural analysis in nonsymbiotic hemoglobins: What can we learn from inner cavities?. Plant<br>Science, 2011, 181, 8-13.                                                                                               | 1.7 | 14        |
| 62 | Unintended consequences? Water molecules at biological and crystallographic protein–protein<br>interfaces. Computational Biology and Chemistry, 2013, 47, 126-141.                                                        | 1.1 | 14        |
| 63 | FADB: a food additive molecular database for <i>in silico</i> screening in food toxicology. Food<br>Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014,<br>31, 792-798. | 1.1 | 14        |
| 64 | 4-Amino-1,2,4-triazole-3-thione as a Promising Scaffold for the Inhibition of Serine and Metallo-Î <sup>2</sup> -Lactamases. Pharmaceuticals, 2020, 13, 52.                                                               | 1.7 | 13        |
| 65 | Folic Acid–Peptide Conjugates Combine Selective Cancer Cell Internalization with Thymidylate<br>Synthase Dimer Interface Targeting. Journal of Medicinal Chemistry, 2021, 64, 3204-3221.                                  | 2.9 | 13        |
| 66 | Water: How to evaluate its contribution in protein-ligand interactions. International Journal of Quantum Chemistry, 2006, 106, 647-651.                                                                                   | 1.0 | 12        |
| 67 | Pyridoxal 5′-Phosphate-Dependent Enzymes: Catalysis, Conformation, and Genomics. , 2010, , 273-350.                                                                                                                       |     | 12        |
| 68 | Chemogenomics of pyridoxal 5′-phosphate dependent enzymes. Journal of Enzyme Inhibition and<br>Medicinal Chemistry, 2013, 28, 183-194.                                                                                    | 2.5 | 12        |
| 69 | BioGPS: The Music for the Chemo―and Bioinformatics Walzer. Molecular Informatics, 2014, 33, 446-453.                                                                                                                      | 1.4 | 11        |
| 70 | Complexity in Modeling and Understanding Protonation States: Computational Titration of<br>HIVâ€lâ€Protease–Inhibitor Complexes. Chemistry and Biodiversity, 2007, 4, 2564-2577.                                          | 1.0 | 10        |
| 71 | Structural insight into the interaction of <i>Oâ€</i> acetylserine sulfhydrylase with competitive,<br>peptidic inhibitors by saturation transfer differenceâ€ <scp>NMR</scp> . FEBS Letters, 2016, 590, 943-953.          | 1.3 | 10        |
| 72 | Paracetamol–Galactose Conjugate: A Novel Prodrug for an Old Analgesic Drug. Molecular<br>Pharmaceutics, 2019, 16, 4181-4189.                                                                                              | 2.3 | 10        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual<br>Screening Workflow. ACS Medicinal Chemistry Letters, 2019, 10, 487-492.                                                 | 1.3 | 10        |
| 74 | Chemical Modulation of the 1-(Piperidin-4-yl)-1,3-dihydro-2H-benzo[d]imidazole-2-one Scaffold as a Novel NLRP3 Inhibitor. Molecules, 2021, 26, 3975.                                                                         | 1.7 | 10        |
| 75 | Tuning the Hydrophobicity of a Mitochondriaâ€Targeted NO Photodonor. ChemMedChem, 2018, 13,<br>1238-1245.                                                                                                                    | 1.6 | 9         |
| 76 | First virtual screening and experimental validation of inhibitors targeting GES-5 carbapenemase.<br>Journal of Computer-Aided Molecular Design, 2019, 33, 295-305.                                                           | 1.3 | 9         |
| 77 | Strigolactone Analogs Are Promising Antiviral Agents for the Treatment of Human Cytomegalovirus<br>Infection. Microorganisms, 2020, 8, 703.                                                                                  | 1.6 | 9         |
| 78 | Human dopamine transporter: the first implementation of a combined in silico/in vitro approach<br>revealing the substrate and inhibitor specificities. Journal of Biomolecular Structure and Dynamics,<br>2019, 37, 291-306. | 2.0 | 8         |
| 79 | The allosteric interplay between Sâ€nitrosylation and glycine binding controls the activity of human serine racemase. FEBS Journal, 2021, 288, 3034-3054.                                                                    | 2.2 | 8         |
| 80 | A new approach for investigating protein flexibility based on Constraint Logic Programming. The first<br>application in the case of the estrogen receptor. European Journal of Medicinal Chemistry, 2012, 49,<br>127-140.    | 2.6 | 7         |
| 81 | Rational Design of a User-Friendly Aptamer/Peptide-Based Device for the Detection of Staphylococcus aureus. Sensors, 2020, 20, 4977.                                                                                         | 2.1 | 7         |
| 82 | Correct Protonation States and Relevant Waters = Better Computational Simulations?. Current<br>Pharmaceutical Design, 2013, 19, 4291-4309.                                                                                   | 0.9 | 7         |
| 83 | New aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the hydroxytriazole scaffold. European<br>Journal of Medicinal Chemistry, 2022, 237, 114366.                                                                        | 2.6 | 7         |
| 84 | Comparative analysis of inner cavities and ligand migration in non-symbiotic AHb1 and AHb2.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1957-1967.                                               | 1.1 | 6         |
| 85 | Can We Exploit Î <sup>2</sup> -Lactamases Intrinsic Dynamics for Designing More Effective Inhibitors?. Antibiotics, 2020, 9, 833.                                                                                            | 1.5 | 6         |
| 86 | A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen <i>Cryphonectria parasitica</i> . New Phytologist, 2022, 234, 1003-1017.                                   | 3.5 | 6         |
| 87 | Cryo-EM structures of staphylococcal IsdB bound to human hemoglobin reveal the process of heme<br>extraction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,<br>e2116708119.    | 3.3 | 6         |
| 88 | Modulating Ligand Dissociation through Methyl Isomerism in Accessory Sites: Binding of Retinol to<br>Cellular Carriers. Journal of Physical Chemistry Letters, 2019, 10, 7333-7339.                                          | 2.1 | 5         |
| 89 | NO release regulated by doxorubicin as the green light-harvesting antenna. Chemical<br>Communications, 2020, 56, 6332-6335.                                                                                                  | 2.2 | 5         |
| 90 | Evaluation of Porcine and Aspergillus oryzae α-Amylases as Possible Model for the Human Enzyme.<br>Processes, 2022, 10, 780.                                                                                                 | 1.3 | 4         |

| #  | Article                                                                                                                                                                        | IF               | CITATIONS         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 91 | Editorial [Hot topic: Applying Induced Fit in Drug Discovery: Square Pegs and Round Holes? (Guest) Tj ETQq1 1 0.7<br>Medicinal Chemistry, 2011, 11, 131-132.                   | 784314 rg<br>1.0 | BT /Overloci<br>2 |
| 92 | Repurposing the Trypanosomatidic GSK Kinetobox for the Inhibition of Parasitic Pteridine and<br>Dihydrofolate Reductases. Pharmaceuticals, 2021, 14, 1246.                     | 1.7              | 2                 |
| 93 | Applying Computational Scoring Functions to Assess Biomolecular Interactions in Food Science:<br>Applications to the Estrogen Receptors. Nuclear Receptor Research, 2016, 3, . | 2.5              | 1                 |
| 94 | Understanding Water and Its Many Roles in Biological Structure: Ways to Exploit a Resource for<br>Drug Discovery. Methods in Pharmacology and Toxicology, 2015, , 85-110.      | 0.1              | 0                 |