
Li-Qiang Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4318568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafast Transient Absorption Microscopy Studies of Carrier Dynamics in Epitaxial Graphene. Nano Letters, 2010, 10, 1308-1313.	4.5	164
2	Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. International Journal of Biological Macromolecules, 2019, 122, 380-387.	3.6	156
3	Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films. Carbohydrate Polymers, 2020, 229, 115456.	5.1	143
4	Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules, 2016, 88, 273-279.	3.6	141
5	Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles. Polymers, 2017, 9, 636.	2.0	124
6	Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydrate Polymers, 2017, 165, 455-461.	5.1	104
7	A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties. International Journal of Biological Macromolecules, 2019, 132, 692-700.	3.6	100
8	Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. International Journal of Biological Macromolecules, 2017, 101, 690-695.	3.6	97
9	Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Applied Microbiology and Biotechnology, 2019, 103, 1989-2006.	1.7	97
10	Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. International Journal of Biological Macromolecules, 2018, 114, 1233-1239.	3.6	79
11	Preparation and characterization of a photocatalytic antibacterial material: Graphene oxide/TiO2/bacterial cellulose nanocomposite. Carbohydrate Polymers, 2017, 174, 1078-1086.	5.1	64
12	Base-induced delignification of miscanthus x giganteus studied by three-dimensional confocal raman imaging. Bioresource Technology, 2010, 101, 4919-4925.	4.8	61
13	Exosomes from different cells: Characteristics, modifications, and therapeutic applications. European Journal of Medicinal Chemistry, 2020, 207, 112784.	2.6	59
14	Surface-Plasmon-Enhanced Fluorescence Spectroscopy for DNA Detection Using Fluorescently Labeled PNA as "DNA Indicatorâ€: Angewandte Chemie - International Edition, 2007, 46, 4944-4947.	7.2	51
15	Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. International Journal of Biological Macromolecules, 2020, 156, 252-261.	3.6	46
16	Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydrate Polymers, 2016, 136, 1152-1160.	5.1	45
17	Spatial Correlation of Confocal Raman Scattering and Secondary Ion Mass Spectrometric Molecular Images of Lignocellulosic Materials. Analytical Chemistry, 2010, 82, 2608-2611.	3.2	41
18	Facile synthesis of bacterial cellulose and polyethyleneimine based hybrid hydrogels for antibacterial applications. Cellulose, 2020, 27, 369-383.	2.4	39

LI-QIANG CHU

#	Article	IF	CITATIONS
19	Stabilization of Plasma-Polymerized Allylamine Films by Ethanol Extraction. Langmuir, 2006, 22, 5548-5551.	1.6	38
20	Reusable ternary PVA films containing bacterial cellulose fibers and ε-polylysine with improved mechanical and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110486.	2.5	38
21	Enhanced fluorescence of carboxymethyl chitosan via metal ion complexation in both solution and hydrogel states. International Journal of Biological Macromolecules, 2020, 152, 50-56.	3.6	36
22	Pulsed Plasma Polymerized Di(ethylene glycol) Monovinyl Ether Coatings for Nonfouling Surfaces. Chemistry of Materials, 2006, 18, 4840-4844.	3.2	32
23	Facile Incorporation of Silver Nanoparticles into Quaternized Poly(2-(Dimethylamino)Ethyl) Tj ETQq1 1 0.78431 Engineering, 2017, 302, 1700069.	4 rgBT /Ov 1.7	verlock 10 Tf 27
24	Pulsed Plasma Polymerized Maleic Anhydride Films in Humid Air and in Aqueous Solutions Studied with Optical Waveguide Spectroscopy. Langmuir, 2006, 22, 2822-2826.	1.6	25
25	Thermosensitive surfaces fabricated by plasma polymerization of N,N-diethylacrylamide. Surface and Coatings Technology, 2008, 202, 2047-2051.	2.2	25
26	Harnessing the affinity of magnetic nanoparticles toward dye-labeled DNA and developing it as an universal aptasensor revealed by lipopolysaccharide detection. Analytica Chimica Acta, 2018, 1036, 107-114.	2.6	21
27	Plasma polymerized epoxide functional surfaces for DNA probe immobilization. Biosensors and Bioelectronics, 2008, 24, 118-122.	5.3	20
28	Characterization of UV-Induced Graft Polymerization of Poly(acrylic acid) Using Optical Waveguide Spectroscopy. Macromolecules, 2006, 39, 8742-8746.	2.2	18
29	Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films. Sensors and Actuators B: Chemical, 2015, 215, 368-372.	4.0	18
30	BSA-Sugar Conjugates as Ideal Building Blocks for SPR-Based Clycan Biosensors. ACS Sensors, 2017, 2, 57-60.	4.0	18
31	Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection. Applied Surface Science, 2017, 407, 185-191.	3.1	15
32	In situ characterization of moisture sorption/desorption in thin polymer films using optical waveguide spectroscopy. Polymer, 2006, 47, 7406-7413.	1.8	14
33	Surface Plasmonâ€Based Techniques for the Analysis of Plasma Deposited Functional Films and Surfaces. Plasma Processes and Polymers, 2015, 12, 941-952.	1.6	14
34	Fluorescent Neomannosyl Bovine Serum Albumin as Efficient Probe for Mannose Receptor Imaging and MCF-7 Cancer Cell Targeting. ACS Applied Nano Materials, 2018, 1, 1058-1065.	2.4	14
35	Polyadenine-mediated Immobilization of Aptamers on a Gold Substrate for the Direct Detection of Bacterial Pathogens. Analytical Sciences, 2019, 35, 967-972.	0.8	14
36	Plasma polymerized non-fouling thin films for DNA immobilization. Biosensors and Bioelectronics, 2009, 25, 519-522.	5.3	11

LI-QIANG CHU

#	Article	lF	CITATIONS
37	Influence of Plasma Polymerized Dielectric Buffer Layer and Gold Film on the Excitation of Long-Range Surface Plasmon Resonance. Plasmonics, 2016, 11, 1519-1524.	1.8	11
38	Young's modulus of plasmaâ€polymerized allylamine films using micromechanical cantilever sensor and laserâ€based surface acoustic wave techniques. Plasma Processes and Polymers, 2018, 15, 1800083.	1.6	11
39	Facile production of three-dimensional chitosan fiber embedded with zinc oxide as recoverable photocatalyst for organic dye degradation. International Journal of Biological Macromolecules, 2021, 181, 150-159.	3.6	11
40	Surface Plasmon Resonance Studies of the Hybridization Behavior of DNA-Modified Gold Nanoparticles with Surface-Attached DNA Probes. Plasmonics, 2018, 13, 903-913.	1.8	7
41	Gelation process of carboxymethyl chitosan-zinc supramolecular hydrogel studied with fluorescence imaging and mathematical modelling. International Journal of Pharmaceutics, 2021, 605, 120804.	2.6	6
42	Immobilization of silver nanoparticles into POEGMA polymer brushes as SERS-active substrates. Surface and Interface Analysis, 2017, 49, 316-322.	0.8	6
43	Direct immobilization of sugar probes on bovine serum albumin-coated gold substrate for the development of glycan biosensors. Biointerphases, 2019, 14, 011003.	0.6	3
44	Preparation and antibacterial activity of silver-loaded poly(oligo(ethylene glycol) methacrylate) brush. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 756-768.	1.9	2