
Gioele Pagot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4318329/publications.pdf Version: 2024-02-01

CIOFLE PACOT

#	Article	IF	CITATIONS
1	Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochimica Acta, 2019, 309, 311-325.	2.6	164
2	An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochimica Acta, 2021, 378, 138133.	2.6	93
3	Magnesium batteries: Current picture and missing pieces of the puzzle. Journal of Power Sources, 2020, 478, 229027.	4.0	70
4	[Nafion/(WO3)x] hybrid membranes for vanadium redox flow batteries. Solid State Ionics, 2018, 319, 110-116.	1.3	68
5	Fe-carbon nitride "Core-shell―electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2016, 222, 1778-1791.	2.6	60
6	Toward a Magnesiumâ€lodine Battery. Advanced Functional Materials, 2016, 26, 4860-4865.	7.8	59
7	A Key concept in Magnesium Secondary Battery Electrolytes. ChemSusChem, 2015, 8, 3069-3076.	3.6	54
8	Single-Ion-Conducting Nanocomposite Polymer Electrolytes for Lithium Batteries Based on Lithiated-Fluorinated-Iron Oxide and Poly(ethylene glycol) 400. Electrochimica Acta, 2015, 175, 113-123.	2.6	47
9	Correlation between Properties and Conductivity Mechanism in Poly(vinyl alcohol)-based Lithium Solid Electrolytes. Solid State Ionics, 2018, 320, 177-185.	1.3	40
10	Highâ€Performance Olivine for Lithium Batteries: Effects of Ni/Co Doping on the Properties of LiFe <i>_α</i> Ni <i>_β</i> Co <i>_γ</i> PO ₄ Cathodes. Advanced Functional Materials, 2015, 25, 4032-4037.	7.8	29
11	Effect of plasticizer on the ion-conductive and dielectric behavior of poly(ethylene carbonate)-based Li electrolytes. Polymer Journal, 2021, 53, 149-155.	1.3	29
12	Elucidation of the interplay between vanadium species and charge-discharge processes in VRFBs by Raman spectroscopy. Electrochimica Acta, 2019, 318, 913-921.	2.6	28
13	Hierarchical oxygen reduction reaction electrocatalysts based on FeSn0.5 species embedded in carbon nitride-graphene based supports. Electrochimica Acta, 2018, 280, 149-162.	2.6	22
14	Electric Response and Conductivity Mechanism in H3PO4‑Doped Polybenzimidazole-4Nâ^'HfO2 Nanocomposite Membranes for High Temperature Fuel Cells. Electrochimica Acta, 2017, 228, 562-574.	2.6	20
15	Opening Doors to Future Electrochemical Energy Devices: The Anion onducting Polyketone Polyelectrolytes. Advanced Functional Materials, 2018, 28, 1706522.	7.8	19
16	A general electrochemical formalism for vanadium redox flow batteries. Electrochimica Acta, 2022, 408, 139937.	2.6	19
17	Interplay Between Structure and Conductivity in 1-Ethyl-3-methylimidazolium tetrafluoroborate/(δ-MgCl 2) f Electrolytes for Magnesium Batteries. Electrochimica Acta, 2016, 219, 152-162.	2.6	18
18	Effect of Graphite and Copper Oxide on the Performance of High Potential Li[Fe 1/3 Ni 1/3 Co 1/3]PO 4 Olivine Cathodes for Lithium Batteries. Electrochimica Acta, 2017, 225, 533-542.	2.6	17

GIOELE PAGOT

#	Article	IF	CITATIONS
19	Electric response and conductivity mechanism reciprocity in H3PO4-doped Polybenzimidazole-4N-ZrO2 nanocomposite membranes. Solid State Ionics, 2018, 320, 172-176.	1.3	14
20	Three-dimensional Catenated 1-ethyl-3-methylimidazolium Halotitanate Ionic Liquid Electrolytes for Electrochimica Acta, 2017, 246, 914-923.	2.6	13
21	Lithiated Nanoparticles Doped with Ionic Liquids as Quasi-Solid Electrolytes for Lithium Batteries. Electrochimica Acta, 2019, 307, 51-63.	2.6	13
22	Correlation between Precursor Properties and Performance in the Oxygen Reduction Reaction of Pt and Co "Core-shell―Carbon Nitride-Based Electrocatalysts. Electrocatalysis, 2020, 11, 143-159.	1.5	13
23	High valence transition metal-doped olivine cathodes for superior energy and fast cycling lithium batteries. Journal of Materials Chemistry A, 2020, 8, 25727-25738.	5.2	12
24	Exotic solid state ion conductor from fluorinated titanium oxide and molten metallic lithium. Journal of Power Sources, 2018, 400, 16-22.	4.0	11
25	Chrysalis-Like Graphene Oxide Decorated Vanadium-Based Nanoparticles: An Extremely High-Power Cathode for Magnesium Secondary Batteries. Journal of the Electrochemical Society, 2020, 167, 070547.	1.3	11
26	Hybrid twin-metal aluminum–magnesium electrolytes for rechargeable batteries. Journal of Power Sources, 2021, 493, 229681.	4.0	11
27	A formalism to compare electrocatalysts for the oxygen reduction reaction by cyclic voltammetry with the thin-film rotating ring-disk electrode measurements. Current Opinion in Electrochemistry, 2022, 31, 100839.	2.5	11
28	Relaxation phenomena and conductivity mechanisms in anion-exchange membranes derived from polyketone. Electrochimica Acta, 2019, 319, 253-263.	2.6	10
29	Hidden in plain sight: unlocking the full potential of cyclic voltammetry with the thin-film rotating (ring) disk electrode studies for the investigation of oxygen reduction reaction electrocatalysts. Current Opinion in Electrochemistry, 2021, 25, 100626.	2.5	10
30	A New Glass-Forming Electrolyte Based on Lithium Glycerolate. Batteries, 2018, 4, 41.	2.1	8
31	(Co, Ni)Sn _{0.5} Nanoparticles Supported on Hierarchical Carbon Nitrideâ€Grapheneâ€Based Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2029-2040.	1.7	6
32	Interplay between coordination, dynamics, and conductivity mechanism in Mg/Al-catenated ionic liquid electrolytes. Journal of Power Sources, 2022, 524, 231084.	4.0	6
33	Effect of Relaxations on the Conductivity of La _{1/2+1/2<i>x</i>} Li _{1/2–1/2<i>x</i>} Ti _{1–<i>x</i>} Al <i>_{xFast Ion Conductors. Chemistry of Materials, 2022, 34, 5484-5499.}</i>	o>≺/i xO xsul	b>3ø/sub>
34	Positron Annihilation Spectroscopy as a Diagnostic Tool for the Study of LiCoO2 Cathode of Lithium-Ion Batteries. Condensed Matter, 2021, 6, 28.	0.8	5
35	Interplay between Conductivity, Matrix Relaxations and Composition of Caâ€Polyoxyethylene Polymer Electrolytes. ChemElectroChem, 2021, 8, 2459-2466.	1.7	5
36	Graphene-Supported Au-Ni Carbon Nitride Electrocatalysts for the ORR in Alkaline Environment. ECS Transactions, 2016, 72, 1-14.	0.3	4

GIOELE PAGOT

#	Article	IF	CITATIONS
37	Inorganicâ€Organic Hybrid Anion Conducting Membranes Based on Ammoniumâ€Functionalized Polyethylene Pyrroleâ€Polyethylene Ketone Copolymer. Macromolecular Chemistry and Physics, 2022, 223, 2100409.	1.1	4
38	Cytotoxicity and DNA interaction in a series of aryl terminated iminopyridine Pt(II) complexes. Journal of Inorganic Biochemistry, 2021, 216, 111335.	1.5	3
39	ORR Electrocatalysts with a Low Pt Loading Comprising Hierarchical Graphene-Based Supports. ECS Meeting Abstracts, 2017, , .	0.0	2
40	Magnesium Batteries: Toward a Magnesium-Iodine Battery (Adv. Funct. Mater. 27/2016). Advanced Functional Materials, 2016, 26, 4859-4859.	7.8	1
41	(Invited) Interplay between Chemical Composition, Synthetic Parameters and ORR Performance of Pt-Free Electrocatalysts for the ORR Including Graphene-Based Cores and a Carbon Nitride Shell. ECS Transactions, 2018, 85, 1251-1263.	0.3	0
42	(Invited) Effect of Ion Coordination on the Long-Range Charge Migration Processes in Ionic Liquid-Based Hybrid Al/Mg Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 422-422.	0.0	0
43	(Invited) Innovative Olivine Cathodes for High-Voltage and High-Rate Lithium Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 1897-1897.	0.0	0
44	(Keynote) Hybrid Inorganic-Organic Ion-Exchange Membranes for Electrochemical Applications: Electrical Response and Conductivity Mechanism. ECS Meeting Abstracts, 2021, MA2021-01, 1918-1918.	0.0	0
45	(Invited) How to Expand the Scope of Cyclic Voltammetry with the Thin-Film Rotating (Ring) Disk Electrode to Investigate Oxygen Reduction Reaction Electrocatalysts. ECS Meeting Abstracts, 2021, MA2021-01, 1900-1900.	0.0	0
46	(Invited) Interplay between Surface/Porosimetric, Chemical and Electrochemical Characterization of "Core-Shell―High-Pt ORR Electrocatalysts. ECS Meeting Abstracts, 2021, MA2021-01, 958-958.	0.0	0
47	A New Pyrrolidinium-Based Electrolyte for Secondary Magnesium Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
48	(Invited) Recent Advances in Electrocatalysts for the Oxygen Reduction Reaction Comprising a Hierarchical Graphene-Based "Core―and a Carbon Nitride "Shell―with a Low Loading of Platinum. ECS Meeting Abstracts, 2019, , .	0.0	0
49	A New Glass Forming Electrolyte Based on Lithium Glycerolate. ECS Meeting Abstracts, 2020, MA2020-01, 264-264.	0.0	0
50	(Invited) A General Framework to Gauge Transport Phenomena in the Cathodic Electrocatalytic Layer of a Fuel Cell. ECS Meeting Abstracts, 2020, MA2020-01, 2790-2790.	0.0	0
51	(Keynote) Electrical Response and Conductivity Mechanism in Ion-Exchange Membranes. ECS Meeting Abstracts, 2020, MA2020-01, 2823-2823.	0.0	0
52	(Invited) New Ionic Liquids (ILs) for Secondary Batteries: Interplay between Structure, Electrical Response and Conductivity Mechanism. ECS Meeting Abstracts, 2020, MA2020-01, 2813-2813.	0.0	0
53	The Role of Structural Features and System Relaxations on the Electrical Response of La1/2+1/2xLi1/2-1/2xTi1-XAlxO3 Perovskites. ECS Meeting Abstracts, 2021, MA2021-02, 236-236.	0.0	0
54	Polyketone Functionalization: New Ways to Anion Conducting Polymers. ECS Meeting Abstracts, 2021, MA2021-02, 1202-1202.	0.0	0

GIOELE PAGOT

#	Article	IF	CITATIONS
55	A New Glass Forming Electrolyte Based on Lithium Glycerolate. ECS Meeting Abstracts, 2020, MA2020-02, 676-676.	0.0	0
56	(Invited) New Ionic Liquids (ILs) for Secondary Batteries: Interplay between Structure, Electrical Response and Conductivity Mechanism. ECS Meeting Abstracts, 2020, MA2020-02, 3242-3242.	0.0	0
57	(Invited) Interplay between the Physicochemical Properties and the Electrochemical Performance of Hierarchial Electrocatalysts for the ORR Comprising a Graphene-based â€~Core' and a Carbon Nitride â€~Shell'. ECS Meeting Abstracts, 2020, MA2020-02, 3207-3207.	0.0	0
58	Correlations between Composition, Matrix Dynamics and Ca2+ Conductivity in Ca-Polyoxyethylene Polymer Electrolytes. ECS Meeting Abstracts, 2021, MA2021-02, 289-289.	0.0	0
59	Toward High-Performance and Durable Hierarchical "Core-Shell―Carbon Nitride Electrocatalysts for the Oxygen Reduction Reaction. ECS Meeting Abstracts, 2021, MA2021-02, 1143-1143.	0.0	0
60	(Keynote) A General Electrochemical Formalism for Vanadium Redox Flow Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 2005-2005.	0.0	0
61	(Invited) A New Frontier in Hybrid Inorganic-Organic Membranes for Redox Flow Batteries: The Polyketone-Based Membranes. ECS Meeting Abstracts, 2022, MA2022-01, 2011-2011.	0.0	0
62	A Formalism Adopting Thin-Film Rotating Ring-Disk Electrode Studies to Compare Electrocatalysts for the Oxygen Reduction Reaction (ORR). ECS Meeting Abstracts, 2022, MA2022-01, 2108-2108.	0.0	0
63	Magnesium- and Tin-Based Ionic Liquid Electrolytes for Advanced Multivalent Metal Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 132-132.	0.0	0
64	(Invited) Correlation between the Porosimetric Features, Morphology, "Ex-Situ―and "in-Situ― electrochemical Performance of Hierarchical "Core-Shell―Carbon Nitride Pt-Alloy ORR Electrocatalysts. ECS Meeting Abstracts, 2022, MA2022-01, 2062-2062.	0.0	0