
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4318316/publications.pdf Version: 2024-02-01

YHANDELLI

#	Article	IF	CITATIONS
1	The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32, 3435-3446.	5.7	871
2	A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nature Communications, 2014, 5, 4712.	5.8	345
3	Wellâ€Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pHâ€Values and <i>cis</i> â€Diols. Angewandte Chemie - International Edition, 2012, 51, 2864-2869.	7.2	318
4	Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials, 2011, 32, 6633-6645.	5.7	288
5	Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Advanced Drug Delivery Reviews, 2014, 66, 58-73.	6.6	259
6	A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials, 2009, 30, 6006-6016.	5.7	211
7	Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials, 2017, 127, 25-35.	5.7	169
8	Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nature Nanotechnology, 2020, 15, 145-153.	15.6	159
9	Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nature Communications, 2018, 9, 3653.	5.8	153
10	Well-Defined, Size-Tunable, Multifunctional Micelles for Efficient Paclitaxel Delivery for Cancer Treatment. Bioconjugate Chemistry, 2010, 21, 1216-1224.	1.8	142
11	Porphyrin-Based Nanomedicines for Cancer Treatment. Bioconjugate Chemistry, 2019, 30, 1585-1603.	1.8	115
12	A novel size-tunable nanocarrier system for targeted anticancer drug delivery. Journal of Controlled Release, 2010, 144, 314-323.	4.8	113
13	PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. Journal of Controlled Release, 2011, 155, 272-281.	4.8	100
14	"OA02―Peptide Facilitates the Precise Targeting of Paclitaxel-Loaded Micellar Nanoparticles to Ovarian Cancer <i>In Vivo</i> . Cancer Research, 2012, 72, 2100-2110.	0.4	87
15	Probing of the Assembly Structure and Dynamics within Nanoparticles during Interaction with Blood Proteins. ACS Nano, 2012, 6, 9485-9495.	7.3	87
16	Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials, 2016, 104, 339-351.	5.7	83
17	Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nature Nanotechnology, 2020, 15, 482-490.	15.6	78
18	Peptide-based materials for cancer immunotherapy. Theranostics, 2019, 9, 7807-7825.	4.6	77

#	Article	IF	CITATIONS
19	Stimuliâ€responsive crosslinked nanomedicine for cancer treatment. Exploration, 2022, 2, .	5.4	74
20	<i>In vivo</i> wide-field multispectral scanning laser ophthalmoscopy–optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature. Journal of Biomedical Optics, 2015, 20, 126005.	1.4	64
21	HSP90 Inhibitor Encapsulated Photo-Theranostic Nanoparticles for Synergistic Combination Cancer Therapy. Theranostics, 2016, 6, 1324-1335.	4.6	64
22	Unique Photochemo-Immuno-Nanoplatform against Orthotopic Xenograft Oral Cancer and Metastatic Syngeneic Breast Cancer. Nano Letters, 2018, 18, 7092-7103.	4.5	59
23	Disulfide Cross-Linked Micelles for the Targeted Delivery of Vincristine to B-Cell Lymphoma. Molecular Pharmaceutics, 2012, 9, 1727-1735.	2.3	50
24	Discovery and Characterization of a Potent and Specific Peptide Ligand Targeting Endothelial Progenitor Cells and Endothelial Cells for Tissue Regeneration. ACS Chemical Biology, 2017, 12, 1075-1086.	1.6	44
25	Sequential Targeting in Crosslinking Nanotheranostics for Tackling the Multibarriers of Brain Tumors. Advanced Materials, 2020, 32, e1903759.	11.1	39
26	Sub-100 nm, long tumor retention SN-38-loaded photonic micelles for tri-modal cancer therapy. Journal of Controlled Release, 2017, 261, 297-306.	4.8	37
27	Single Small Moleculeâ€Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy In Vivo. Advanced Functional Materials, 2021, 31, 2008460.	7.8	36
28	Novel Redoxâ€Responsive Polymeric Magnetosomes with Tunable Magnetic Resonance Property for In Vivo Drug Release Visualization and Dualâ€Modal Cancer Therapy. Advanced Functional Materials, 2018, 28, 1802159.	7.8	35
29	Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials, 2018, 161, 203-215.	5.7	33
30	Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer. International Journal of Nanomedicine, 2012, 7, 2793.	3.3	31
31	"One-Pot―Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics. Theranostics, 2017, 7, 3901-3914.	4.6	29
32	Rotatable Aggregationâ€Inducedâ€Emission/Aggregationâ€Causedâ€Quenching Ratio Strategy for Realâ€Time Tracking Nanoparticle Dynamics. Advanced Functional Materials, 2020, 30, 1910348.	7.8	28
33	Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nature Communications, 2020, 11, 4615.	5.8	27
34	LHRHâ€Targeted Redoxâ€Responsive Crosslinked Micelles Impart Selective Drug Delivery and Effective Chemotherapy in Tripleâ€Negative Breast Cancer. Advanced Healthcare Materials, 2021, 10, e2001196.	3.9	27
35	Characterization of high-affinity peptides and their feasibility for use in nanotherapeutics targeting leukemia stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1116-1124.	1.7	26
36	Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology, 2016, 27, 425103.	1.3	26

#	Article	IF	CITATIONS
37	Image-guided photo-therapeutic nanoporphyrin synergized HSP90 inhibitor in patient-derived xenograft bladder cancer model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 789-799.	1.7	25
38	A Plug-and-Play, Drug-on-Pillar Platform for Combination Drug Screening Implemented by Microfluidic Adaptive Printing. Analytical Chemistry, 2018, 90, 13969-13977.	3.2	21
39	Daunorubicin-containing CLL1-targeting nanomicelles have anti-leukemia stem cell activity in acute myeloid leukemia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102004.	1.7	21
40	A nephrotoxicity-free, iron-based contrast agent for magnetic resonance imaging of tumors. Biomaterials, 2020, 257, 120234.	5.7	21
41	Tumor Receptor-Mediated In Vivo Modulation of the Morphology, Phototherapeutic Properties, and Pharmacokinetics of Smart Nanomaterials. ACS Nano, 2021, 15, 468-479.	7.3	21
42	A facile strategy for fine-tuning the stability and drug release of stimuli-responsive cross-linked micellar nanoparticles towards precision drug delivery. Nanoscale, 2017, 9, 7765-7770.	2.8	20
43	A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale, 2018, 10, 21634-21639.	2.8	20
44	Extremely long tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. Journal of Controlled Release, 2017, 264, 169-179.	4.8	18
45	Light-triggered nitric oxide release and structure transformation of peptide for enhanced intratumoral retention and sensitized photodynamic therapy. Bioactive Materials, 2022, 12, 303-313.	8.6	18
46	Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. Nanoscale, 2018, 10, 8207-8216.	2.8	17
47	A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model. Acta Pharmaceutica Sinica B, 2022, 12, 2672-2682.	5.7	15
48	Recent advances on smallâ€nolecule nanomedicines for cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1607.	3.3	14
49	Identification of osteogenic progenitor cell-targeted peptides that augment bone formation. Nature Communications, 2020, 11, 4278.	5.8	14
50	Novel window for cancer nanotheranostics: non-invasive ocular assessments of tumor growth and nanotherapeutic treatment efficacy in vivo. Biomedical Optics Express, 2019, 10, 151.	1.5	13
51	A polymer-free, biomimicry drug self-delivery system fabricated <i>via</i> a synergistic combination of bottom-up and top-down approaches. Journal of Materials Chemistry B, 2018, 6, 7842-7853.	2.9	12
52	Nanoformulated paclitaxel and AZD9291 synergistically eradicate non-small-cell lung cancers <i>in vivo</i> . Nanomedicine, 2018, 13, 1107-1120.	1.7	12
53	Apatinib enhances the anti-tumor effect of paclitaxel via the PI3K/p65/Bcl-xl pathway in triple-negative breast cancer. Annals of Translational Medicine, 2021, 9, 1001-1001.	0.7	12
54	Telodendrimer-based nanocarriers for the treatment of ovarian cancer. Therapeutic Delivery, 2013, 4, 1279-1292.	1.2	11

#	Article	IF	CITATIONS
55	Heterocyclic N-Oxides as Small-Molecule Fluorogenic Scaffolds: Rational Design and Applications of Their "On–Off―Fluorescence. Analytical Chemistry, 2020, 92, 12282-12289.	3.2	11
56	Excipient-free porphyrin/SN-38 based nanotheranostics for drug delivery and cell imaging. Nano Research, 2020, 13, 503-510.	5.8	11
57	A highly integrated precision nanomedicine strategy to target esophageal squamous cell cancer molecularly and physically. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2103-2114.	1.7	10
58	Iron-crosslinked Rososome with robust stability and high drug loading for synergistic cancer therapy. Journal of Controlled Release, 2021, 329, 794-804.	4.8	10
59	Selfâ€Assembled Nanoparticleâ€Mediated Chemophototherapy Reverses the Drug Resistance of Bladder Cancers through Dual AKT/ERK Inhibition. Advanced Therapeutics, 2020, 3, 2000032.	1.6	10
60	A pHâ€Driven Smallâ€Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagyâ€Induced Resistance in Cancer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
61	Cholic acid-based novel micellar nanoplatform for delivering FDA-approved taxanes. Nanomedicine, 2017, 12, 1153-1164.	1.7	9
62	The Synergistic Effects of Pyrotinib Combined With Adriamycin on HER2-Positive Breast Cancer. Frontiers in Oncology, 2021, 11, 616443.	1.3	9
63	Immobilized OBOC Combinatorial Bead Array to Facilitate Multiplicative Screening. Combinatorial Chemistry and High Throughput Screening, 2013, 16, 441-448.	0.6	8
64	Nanomicelle formulation modifies the pharmacokinetic profiles and cardiac toxicity of daunorubicin. Nanomedicine, 2014, 9, 1807-1820.	1.7	7
65	Nanomedicine in veterinary oncology. Veterinary Journal, 2015, 205, 189-197.	0.6	6
66	Novel Nanococktail of a Dual PI3K/mTOR Inhibitor and Cabazitaxel for Castrationâ€Resistant Prostate Cancer. Advanced Therapeutics, 2020, 3, 2000075.	1.6	5
67	The Cationic Amphiphilic Drug Hexamethylene Amiloride Eradicates Bulk Breast Cancer Cells and Therapy-Resistant Subpopulations with Similar Efficiencies. Cancers, 2022, 14, 949.	1.7	3
68	Inside Back Cover: Well-Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pHâ€Values andcis-Diols (Angew. Chem. Int. Ed. 12/2012). Angewandte Chemie - International Edition, 2012, 51, 3027-3027.	7.2	1
69	A Facile and Efficient Approach for the Production of Reversible Disulfide Cross-linked Micelles. Journal of Visualized Experiments, 2016, , .	0.2	0