
Krzysztof Matus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4318280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Laser Alloying Process of Ductile Cast Iron Surface with Titanium Powder in Nitrogen Atmosphere. Coatings, 2022, 12, 227.	2.6	6
2	High-Power Diode Laser Surface Transformation Hardening of Ferrous Alloys. Materials, 2022, 15, 1915.	2.9	2
3	Evolution of Microstructure, Texture and Corrosion Properties of Additively Manufactured AlSi10Mg Alloy Subjected to Equal Channel Angular Pressing (ECAP). Symmetry, 2022, 14, 674.	2.2	11
4	Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal. Catalysts, 2022, 12, 19.	3.5	1
5	Cenospheres-Reinforced PA-12 Composite: Preparation, Physicochemical Properties, and Soaking Tests. Polymers, 2022, 14, 2332.	4.5	3
6	Morphology, Phase and Chemical Analysis of Leachate after Bioleaching Metals from Printed Circuit Boards. Materials, 2022, 15, 4373.	2.9	1
7	Mechanical stability of retained austenite in aluminum-containing medium-Mn steel deformed at different temperatures. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	9
8	Ultrasound Effect on the Microstructure and Hardness of AlMg3 Alloy under Upsetting. Materials, 2021, 14, 1010.	2.9	4
9	Continuous-flow hydrogenation over resin supported palladium catalyst for the synthesis of industrially relevant chemicals. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 717-728.	1.7	4
10	Towards High Efficacy of Pd-Au/C Catalyst for Tetrachloromethane Hydrodechlorination. Chemistry, 2021, 3, 338-359.	2.2	1
11	Dry Reforming of Methane over Carbon Fibre-Supported CeZrO2, Ni-CeZrO2, Pt-CeZrO2 and Pt-Ni-CeZrO2 Catalysts. Catalysts, 2021, 11, 563.	3.5	8
12	Structure and Properties of Co-Cr-Mo Alloy Manufactured by Powder Injection Molding Method. Materials, 2021, 14, 2010.	2.9	6
13	Continuous 2-Methyl-3-butyn-2-ol Selective Hydrogenation on Pd/γ-Al2O3 as a Green Pathway of Vitamin A Precursor Synthesis. Catalysts, 2021, 11, 501.	3.5	10
14	Mechanical and thermal stability of retained austenite in plastically deformed bainite-based TRIP-aided medium-Mn steels. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	10
15	Alumina and Zirconia-Reinforced Polyamide PA-12 Composites for Biomedical Additive Manufacturing. Materials, 2021, 14, 6201.	2.9	24
16	Effect of Calcination Temperature on the Phase Composition, Morphology, and Thermal Properties of ZrO2 and Al2O3 Modified with APTES (3-aminopropyltriethoxysilane). Materials, 2021, 14, 6651.	2.9	24
17	CO2 Hydrogenation to Methanol over Ce and Zr Containing UiO-66 and Cu/UiO-66. Catalysts, 2020, 10, 39.	3.5	32
18	Boosting the Performance of Nano-Ni Catalysts by Palladium Doping in Flow Hydrogenation of Sulcatone. Catalysts, 2020, 10, 1267.	3.5	4

Krzysztof Matus

#	Article	IF	CITATIONS
19	Hydrodechlorination of CHClF2 (HCFC-22) over Pd–Pt Catalysts Supported on Thermally Modified Activated Carbon. Catalysts, 2020, 10, 1291.	3.5	7
20	Dry Reforming of Methane over CNT-Supported CeZrO2, Ni and Ni-CeZrO2 Catalysts. Catalysts, 2020, 10, 741.	3.5	10
21	An Organic–Inorganic Hybrid Nanocomposite as a Potential New Biological Agent. Nanomaterials, 2020, 10, 2551.	4.1	8
22	Effect of unimodality and bimodality of Pd nanoparticles on the catalytic activity of Pd/SiO2 in the removal of diclofenac from water. Catalysis Communications, 2020, 143, 106056.	3.3	1
23	Decoration of Cubeâ€Like Ceria Crystals by Wellâ€Dispersed Au Nanoparticles: Surface Influence. ChemistrySelect, 2020, 5, 2871-2877.	1.5	3
24	Influence of Solidification Conditions on the Microstructure of Laser-Surface-Melted Ductile Cast Iron. Materials, 2020, 13, 1174.	2.9	14
25	Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot-Rolling. Materials, 2020, 13, 739.	2.9	5
26	HKUST-1-Supported Cerium Catalysts for CO Oxidation. Catalysts, 2020, 10, 108.	3.5	15
27	Comparison of the Crystal Structure and Wear Resistance of Co-Based Alloys with Low Carbon Content Manufactured by Selective Laser Sintering and Powder Injection Molding. Crystals, 2020, 10, 197.	2.2	10
28	Tuning Nanoâ€Nickel Catalyst Hydrogenation Aptitude by Onâ€ŧheâ€Fly Zirconium Doping. ChemCatChem, 2020, 12, 3132-3138.	3.7	2
29	n-Hexane Hydrogenolysis Behavior of Alumina-Supported Palladium–Platinum Alloys. Catalysis Letters, 2019, 149, 3176-3183.	2.6	2
30	n-Hexane conversion on γ-alumina supported palladium–platinum catalysts. Adsorption, 2019, 25, 843-853.	3.0	10
31	Alkane isomerization on highly reduced Pd/Al2O3 catalysts. The crucial role of Pd-Al species. Catalysis Communications, 2019, 123, 17-22.	3.3	9
32	Influence of microwave activation on the catalytic behavior of Pd-Au/C catalysts employed in the hydrodechlorination of tetrachloromethane. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 375-388.	1.7	6
33	The impact of synthesis method of CNT supported CeZrO2 and Ni-CeZrO2 on catalytic activity in WGS reaction. Catalysis Today, 2018, 301, 172-182.	4.4	24
34	Tuning nano-nickel selectivity with tin in flow hydrogenation of 6-methyl-5-hepten-2-one by surface organometallic chemistry modification. Catalysis Today, 2018, 308, 38-44.	4.4	10
35	Generation of palladium silicide in the PdAu-SiO2 nanocomposites during heating in hydrogen. Journal of Alloys and Compounds, 2018, 735, 349-354.	5.5	2
36	Application of silica-supported Ir and Ir-M (M = Pt, Pd, Au) catalysts for low-temperature hydrodechlorination of tetrachloromethane. Science of the Total Environment, 2018, 644, 287-297.	8.0	8

#	Article	IF	CITATIONS
37	<i>Onâ€ŧheâ€fly</i> Catalyst Accretion and Screening in Chemoselective Flow Hydrogenation. ChemCatChem, 2018, 10, 3641-3646.	3.7	8
38	Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene. AIMS Materials Science, 2017, 4, 1276-1288.	1.4	4