
Fabienne Lagarde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4318227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environmental Pollution, 2016, 215, 331-339.	7.5	481
2	Is there any consistency between the microplastics found in the field and those used in laboratory experiments?. Environmental Pollution, 2016, 211, 111-123.	7.5	392
3	Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life?. Marine Pollution Bulletin, 2018, 129, 664-674.	5.0	217
4	Raman Tweezers for Small Microplastics and Nanoplastics Identification in Seawater. Environmental Science & Technology, 2019, 53, 9003-9013.	10.0	194
5	From macroplastics to microplastics: Role of water in the fragmentation of polyethylene. Chemosphere, 2019, 236, 124409.	8.2	186
6	Constraints and Priorities for Conducting Experimental Exposures of Marine Organisms to Microplastics. Frontiers in Marine Science, 2018, 5, .	2.5	178
7	Quantification and characterization of microplastics in blue mussels (Mytilus edulis): protocol setup and preliminary data on the contamination of the French Atlantic coast. Environmental Science and Pollution Research, 2018, 25, 6135-6144.	5.3	104
8	Microplastic abundance and characteristics in French Atlantic coastal sediments using a new extraction method. Environmental Pollution, 2018, 243, 228-237.	7.5	97
9	Tissue-Specific Biomarker Responses in the Blue Mussel Mytilus spp. Exposed to a Mixture of Microplastics at Environmentally Relevant Concentrations. Frontiers in Environmental Science, 2019, 7, .	3.3	93
10	Realistic environmental exposure to microplastics does not induce biological effects in the Pacific oyster Crassostrea gigas. Marine Pollution Bulletin, 2020, 150, 110627.	5.0	62
11	Towards more realistic reference microplastics and nanoplastics: preparation of polyethylene micro/nanoparticles with a biosurfactant. Environmental Science: Nano, 2019, 6, 315-324.	4.3	54
12	Raman spectroscopy and thermal analysis of gum and silica-filled NR/SBR blends prepared from latex system. Polymer Testing, 2013, 32, 852-861.	4.8	42
13	Variability estimation of urban wastewater biodegradable fractions by respirometry. Water Research, 2005, 39, 4768-4778.	11.3	40
14	Current methods to monitor microalgae-nanoparticle interaction and associated effects. Aquatic Toxicology, 2019, 217, 105311.	4.0	37
15	An Irgafos® 168 story: When the ubiquity of an additive prevents studying its leaching from plastics. Science of the Total Environment, 2020, 749, 141651.	8.0	27
16	Infrared spectroscopy as a tool to monitor interactions between nanoplastics and microalgae. Analytical and Bioanalytical Chemistry, 2020, 412, 4413-4422.	3.7	25
17	Thin polyethylene (LDPE) films with controlled crystalline morphology for studying plastic weathering and microplastic generation. Polymer Degradation and Stability, 2022, 195, 109791.	5.8	18
18	Microbiological identification by surface-enhanced Raman spectroscopy. Applied Spectroscopy Reviews, 2017, 52, 123-144.	6.7	17

FABIENNE LAGARDE

#	Article	IF	CITATIONS
19	Enhanced Raman spectroscopy coupled to chemometrics for identification and quantification of acetylcholinesterase inhibitors. Vibrational Spectroscopy, 2016, 87, 27-33.	2.2	15
20	Raman investigation of thermoplastic vulcanizates based on hydrogenated natural rubber/polypropylene blends. Polymer Testing, 2017, 57, 107-114.	4.8	15
21	Raman tweezers for tire and road wear micro- and nanoparticles analysis. Environmental Science: Nano, 2022, 9, 145-161.	4.3	14
22	The effect of percent hydrogenation and vulcanization system on ozone stability of hydrogenated natural rubber vulcanizates using Raman spectroscopy. Polymer Degradation and Stability, 2017, 141, 58-68.	5.8	12
23	Interactions between polystyrene nanoparticles and Chlamydomonas reinhardtii monitored by infrared spectroscopy combined with molecular biology. Environmental Pollution, 2020, 266, 115227.	7.5	9
24	Acetylcholine and acetylcholinesterase inhibitors detection using gold nanoparticles coupled with dynamic light scattering. Sensors International, 2020, 1, 100007.	8.4	7
25	Assessing chemical oxygen demand and nitrogen conversions in a multi-stage activated sludge plant with alternating aeration. Journal of Chemical Technology and Biotechnology, 2007, 82, 367-375.	3.2	6
26	The Role of Laboratory Experiments in the Validation of Field Data. Comprehensive Analytical Chemistry, 2017, 75, 241-273.	1.3	6
27	A new way to discriminate polluted wood by vibrational spectroscopies. Talanta, 2017, 167, 436-441.	5.5	5
28	High-yield aqueous synthesis of multi-branched iron oxide core–gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4
29	Anisotropic core-shell Fe3 O4 @Au magnetic nanoparticles and the effect of the immunomagnetic separation volume on the capture efficiency. Pure and Applied Chemistry, 2014, 86, 967-978.	1.9	2
30	Raman Tweezers for single nanoplastic particles analysis in liquid environment. , 2021, , .		0