Katherine Stott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4317603/publications.pdf Version: 2024-02-01

KATHEDINE STOTT

#	Article	IF	CITATIONS
1	Excitation Sculpting in High-Resolution Nuclear Magnetic Resonance Spectroscopy: Application to Selective NOE Experiments. Journal of the American Chemical Society, 1995, 117, 4199-4200.	6.6	680
2	One-Dimensional NOE Experiments Using Pulsed Field Gradients. Journal of Magnetic Resonance, 1997, 125, 302-324.	1.2	406
3	Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 989-993.	3.3	263
4	Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 2018, 3, 210-219.	5.9	263
5	The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of <i>Arabidopsis thaliana</i> . Plant Journal, 2014, 79, 492-506.	2.8	243
6	An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nature Plants, 2017, 3, 859-865.	4.7	204
7	Highly disordered histone H1â^'DNA model complexes and their condensates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11964-11969.	3.3	161
8	HMGB1-Facilitated p53 DNA Binding Occurs via HMG-Box/p53 Transactivation Domain Interaction, Regulated by the Acidic Tail. Structure, 2012, 20, 2014-2024.	1.6	120
9	Structure of a Complex of Tandem HMG Boxes and DNA. Journal of Molecular Biology, 2006, 360, 90-104.	2.0	107
10	A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 2018, 3, 1314-1326.	5.9	103
11	H1 and HMGB1: modulators of chromatin structure. Biochemical Society Transactions, 2012, 40, 341-346.	1.6	99
12	Local and long-range stability in tandemly arrayed tetratricopeptide repeats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5721-5726.	3.3	90
13	Tail-Mediated Collapse of HMGB1 Is Dynamic and Occurs via Differential Binding of the Acidic Tail to the A and B Domains. Journal of Molecular Biology, 2010, 403, 706-722.	2.0	89
14	The Interaction of HMGB1 and Linker Histones Occurs Through their Acidic and Basic Tails. Journal of Molecular Biology, 2008, 384, 1262-1272.	2.0	87
15	An unusual xylan in Arabidopsis primary cell walls is synthesised by <scp>GUX</scp> 3, <scp>IRX</scp> 9L, <scp>IRX</scp> 10L and <scp>IRX</scp> 14. Plant Journal, 2015, 83, 413-426.	2.8	77
16	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	1.1	71
17	Mapping Intramolecular Interactions between Domains in HMGB1 using a Tail-truncation Approach. Journal of Molecular Biology, 2007, 374, 1286-1297.	2.0	68
18	Crystal Structure and Molecular Imaging of the Nav Channel β3 Subunit Indicates a Trimeric Assembly. Journal of Biological Chemistry, 2014, 289, 10797-10811.	1.6	67

KATHERINE STOTT

#	Article	IF	CITATIONS
19	Characterisation of FUT4 and FUT6 α-(1→2)-Fucosyltransferases Reveals that Absence of Root Arabinogalactan Fucosylation Increases Arabidopsis Root Growth Salt Sensitivity. PLoS ONE, 2014, 9, e93291.	1.1	59
20	Timeless couples Gâ€quadruplex detection with processing by <scp>DDX</scp> 11 helicase during <scp>DNA</scp> replication. EMBO Journal, 2020, 39, e104185.	3.5	52
21	Mapping the Binding Site of TRPV1 on AKAP79: Implications for Inflammatory Hyperalgesia. Journal of Neuroscience, 2013, 33, 9184-9193.	1.7	40
22	Disordered domains in chromatin-binding proteins. Essays in Biochemistry, 2019, 63, 147-156.	2.1	36
23	A critical role in structure-specific DNA binding for the acetylatable lysine residues in HMGB1. Biochemical Journal, 2008, 411, 553-561.	1.7	35
24	Characterization of the interaction between HMGB1 and H3a possible means of positioning HMGB1 in chromatin. Nucleic Acids Research, 2014, 42, 848-859.	6.5	34
25	Characterization of Chromoshadow Domain-mediated Binding of Heterochromatin Protein 1α (HP1α) to Histone H3. Journal of Biological Chemistry, 2012, 287, 18730-18737.	1.6	32
26	Two Homologous Domains of Similar Structure but Different Stability in the Yeast Linker Histone, Hho1p. Journal of Molecular Biology, 2004, 338, 139-148.	2.0	31
27	Development of an oligosaccharide library to characterise the structural variation in glucuronoarabinoxylan in the cell walls of vegetative tissues in grasses. Biotechnology for Biofuels, 2019, 12, 109.	6.2	26
28	Chain alignment of collagen I deciphered using computationally designed heterotrimers. Nature Chemical Biology, 2020, 16, 423-429.	3.9	24
29	Systemic α-synuclein injection triggers selective neuronal pathology as seen in patients with Parkinson's disease. Molecular Psychiatry, 2021, 26, 556-567.	4.1	24
30	Gradient-Enhanced One-Dimensional Heteronuclear NOE Experiment with1H Detection. Magnetic Resonance in Chemistry, 1996, 34, 554-558.	1.1	22
31	1H, 15N and 13C backbone assignment of the green fluorescent protein (GFP). Journal of Biomolecular NMR, 2003, 26, 281-282.	1.6	21
32	Structural Insights into the Mechanism of Negative Regulation of Single-box High Mobility Group Proteins by the Acidic Tail Domain. Journal of Biological Chemistry, 2014, 289, 29817-29826.	1.6	20
33	Structure and properties of a dimeric N-terminal fragment of human ubiquitin 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 314, 773-787.	2.0	14
34	Proposed Allosteric Inhibitors Bind to the ATP Site of CK2α. Journal of Medicinal Chemistry, 2020, 63, 12786-12798.	2.9	12
35	Engineering the Structural Stability and Functional Properties of the GI Domain into the Intrinsically Unfolded GII Domain of the Yeast Linker Histone Hho1p. Journal of Molecular Biology, 2005, 349, 608-620.	2.0	10
36	The crystal structure of <i>Clostridium perfringens</i> SleM, a muramidase involved in cortical hydrolysis during spore germination. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1681-1689.	1.5	7

#	Article	IF	CITATIONS
37	Hidden Multivalency in Phosphatase Recruitment by a Disordered AKAP Scaffold. Journal of Molecular Biology, 2022, 434, 167682.	2.0	5
38	Transvascular delivery of α-synuclein preformed fibrils, using the RVG9R delivery system, generates α-synuclein pathology in the duodenal myenteric plexus of non-transgenic rats. Molecular Psychiatry, 2021, 26, 365-365.	4.1	1