Jaesang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4317573/publications.pdf Version: 2024-02-01

IAESANC YU

#	Article	IF	CITATIONS
1	Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports, 2016, 6, 26825.	3.3	126
2	Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Composites Part B: Engineering, 2015, 79, 505-512.	12.0	119
3	Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents. Polymer Chemistry, 2016, 7, 36-43.	3.9	104
4	Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Composites Part A: Applied Science and Manufacturing, 2015, 69, 219-225.	7.6	99
5	Ultra-high dispersion of graphene in polymer composite via solvent freefabrication and functionalization. Scientific Reports, 2015, 5, 9141.	3.3	93
6	Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions. Composites Science and Technology, 2015, 106, 156-162.	7.8	61
7	Soft and Stretchable Liquid Metal Composites with Shape Memory and Healable Conductivity. ACS Applied Materials & Interfaces, 2021, 13, 28916-28924.	8.0	50
8	Improved thermal conductivity of polymeric composites fabricated by solvent-free processing for the enhanced dispersion of nanofillers and a theoretical approach for composites containing multiple heterogeneities and geometrized nanofillers. Composites Science and Technology, 2014, 101, 79-85.	7.8	46
9	Pyridine-functionalized graphene/polyimide nanocomposites; mechanical, gas barrier, and catalytic effects. Composites Part B: Engineering, 2017, 114, 280-288.	12.0	37
10	Classical micromechanics modeling of nanocomposites with carbon nanofibers and interphase. Journal of Composite Materials, 2011, 45, 2401-2413.	2.4	34
11	Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Science Advances, 2022, 8, eabn0939.	10.3	34
12	Thermally conductive composite film filled with highly dispersed graphene nanoplatelets via solvent-free one-step fabrication. Composites Part B: Engineering, 2017, 110, 171-177.	12.0	30
13	The influence of N-doping types for carbon nanotube reinforced epoxy composites: A combined experimental study and molecular dynamics simulation. Composites Part A: Applied Science and Manufacturing, 2017, 103, 17-24.	7.6	25
14	Sustainable production of reduced graphene oxide using elemental sulfur for multifunctional composites. Composites Part B: Engineering, 2019, 176, 107236.	12.0	20
15	Effective property estimates for composites containing multiple nanoheterogeneities: Part II nanofibers and voids. Journal of Composite Materials, 2013, 47, 1273-1282.	2.4	19
16	Effective property estimates for composites containing multiple nanoheterogeneities: Part I Nanospheres, nanoplatelets, and voids. Journal of Composite Materials, 2013, 47, 549-558.	2.4	18
17	Robust and Flexible Polyurethane Composite Nanofibers Incorporating Multi-Walled Carbon Nanotubes Produced by Solution Blow Spinning. Macromolecular Materials and Engineering, 2016, 301, 364-370.	3.6	17
18	Methylpiperidine-functionalized graphene oxide for efficient curing acceleration and gas barrier of polymer nanocomposites. Applied Surface Science, 2019, 464, 509-515.	6.1	17

JAESANG YU

#	Article	IF	CITATIONS
19	Enhancement of thermo-mechanical stability for nanocomposites containing plasma treated carbon nanotubes with an experimental study and molecular dynamics simulations. Scientific Reports, 2020, 10, 405.	3.3	17
20	Determination of carbon nanofiber morphology in vinyl ester nanocomposites. Journal of Composite Materials, 2012, 46, 1943-1953.	2.4	15
21	Chemical assembling of amine functionalized boron nitride nanotubes onto polymeric nanofiber film for improving their thermal conductivity. RSC Advances, 2018, 8, 4426-4433.	3.6	15
22	Molecular Design and Property Prediction of Sterically Confined Polyimides for Thermally Stable and Transparent Materials. Polymers, 2018, 10, 630.	4.5	14
23	Carbon fiber-reinforced plastics based on epoxy resin toughened with core shell rubber impact modifiers. E-Polymers, 2015, 15, 369-375.	3.0	12
24	A combined analytical formulation and genetic algorithm to analyze the nonlinear damage responses of continuous fiber toughened composites. Computational Mechanics, 2017, 60, 393-408.	4.0	12
25	Influences of carboxyl functionalization of intercalators on exfoliation of graphite oxide: a molecular dynamics simulation. Physical Chemistry Chemical Physics, 2018, 20, 28616-28622.	2.8	12
26	The effect of aqueous polyimide sizing agent on PEEK based carbon fiber composites using experimental techniques and molecular dynamics simulations. Functional Composites and Structures, 2020, 2, 025001.	3.4	12
27	High-flame retarding properties of polyacrylonitrile copolymer nanocomposites with synergistic effect of elemental sulfur-doped reduced graphene oxide and bio-derived catechol units. Composites Part A: Applied Science and Manufacturing, 2021, 148, 106477.	7.6	10
28	Strain Transfer Function of Distributed Optical Fiber Sensors and Back-Calculation of the Base Strain Field. Sensors, 2021, 21, 3365.	3.8	8
29	Multifunctional aminoethylpiperazine-modified graphene oxide with high dispersion stability in polar solvents for mercury ion adsorption. Journal of Industrial and Engineering Chemistry, 2020, 90, 224-231.	5.8	7
30	Synergistic Effects of Hybrid Carbonaceous Fillers of Carbon Fibers and Reduced Graphene Oxides on Enhanced Heat-Dissipation Capability of Polymer Composites. Polymers, 2020, 12, 909.	4.5	6
31	Enhanced Tensile Properties of Multi-Walled Carbon Nanotubes Filled Polyamide 6 Composites Based on Interface Modification and Reactive Extrusion. Polymers, 2020, 12, 997.	4.5	5
32	Prediction and experimental validation of composite strength by applying modified micromechanics for composites containing multiple distinct heterogeneities. Composites Part B: Engineering, 2016, 91, 1-7.	12.0	3
33	Structural control of crumpled sulfurâ€assisted reduced graphene oxide with elemental sulfur for supercapacitor. International Journal of Energy Research, 2021, 45, 21209-21218.	4.5	3
34	Analysis of mechanical and thermal characterization of hexagonal boron nitride using a molecular dynamics simulation with the new Dreiding force field. Mechanics of Advanced Materials and Structures, 0, , 1-9.	2.6	2
35	Surface Modification of Sulfur-Assisted Reduced Graphene Oxide with Poly(phenylene sulfide) for Multifunctional Nanocomposites. Polymers, 2022, 14, 732.	4.5	2
36	Mechanically strong and highly ion conductive graphene oxide liquid crystal film containing the poly(amic acid) salt. International Journal of Energy Research, 2022, 46, 10620-10632.	4.5	2

		Jaesang Yu		
#	Article		IF	CITATIONS
37	Analysis of the effect of organic solvent–sheet interfacial interaction on the exfoliation of sulfur-doped reduced graphene oxide sheets in a solvent system using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 20665-20672.		2.8	1