Evangelos C Tatsis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4317145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convergent gene clusters underpin hyperforin biosynthesis in St John's wort. New Phytologist, 2022, 235, 646-661.	7.3	12
2	Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet, 2020, 2, 463-481.	3.3	88
3	Gene Discovery in <i>Gelsemium</i> Highlights Conserved Gene Clusters in Monoterpene Indole Alkaloid Biosynthesis. ChemBioChem, 2019, 20, 83-87.	2.6	66
4	A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. Journal of the American Chemical Society, 2018, 140, 4302-4316.	13.7	118
5	Discovery of a Shortâ€Chain Dehydrogenase from <i>Catharanthus roseus</i> that Produces a New Monoterpene Indole Alkaloid. ChemBioChem, 2018, 19, 940-948.	2.6	20
6	An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nature Plants, 2017, 3, 16208.	9.3	123
7	A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nature Communications, 2017, 8, 316.	12.8	117
8	Dual Catalytic Activity of a Cytochrome P450 Controls Bifurcation at a Metabolic Branch Point of Alkaloid Biosynthesis in <i>Rauwolfia serpentina</i> . Angewandte Chemie, 2017, 129, 9568-9572.	2.0	7
9	Dual Catalytic Activity of a Cytochrome P450 Controls Bifurcation at a Metabolic Branch Point of Alkaloid Biosynthesis in <i>Rauwolfia serpentina</i> . Angewandte Chemie - International Edition, 2017, 56, 9440-9444.	13.8	33
10	New developments in engineering plant metabolic pathways. Current Opinion in Biotechnology, 2016, 42, 126-132.	6.6	83
11	Unprecedented Utilization of Pelargonidin and Indole for the Biosynthesis of Plant Indole Alkaloids. ChemBioChem, 2016, 17, 318-327.	2.6	11
12	Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity. Nature Communications, 2016, 7, 12116.	12.8	85
13	Unlocking the Diversity of Alkaloids in Catharanthus roseus: Nuclear Localization Suggests Metabolic Channeling in Secondary Metabolism. Chemistry and Biology, 2015, 22, 336-341.	6.0	103
14	Biosynthesis of Nudicaulins: A ¹³ CO ₂ â€Pulse/Chase Labeling Study with <i>Papaver nudicaule</i> . ChemBioChem, 2014, 15, 1645-1650.	2.6	10
15	Concentration Kinetics of Secoisolariciresinol Diglucoside and its Biosynthetic Precursor Coniferin in Developing Flaxseed. Phytochemical Analysis, 2013, 24, 41-46.	2.4	9
16	Nudicaulins, Yellow Flower Pigments of <i>Papaver nudicaule</i> : Revised Constitution and Assignment of Absolute Configuration. Organic Letters, 2013, 15, 156-159.	4.6	28
17	Occurrence of nudicaulin structural variants in flowers of papaveraceous species. Phytochemistry, 2013, 92, 105-112.	2.9	18
18	1H NMR determination of hypericin and pseudohypericin in complex natural mixtures by the use of strongly deshielded OH groups. Analytica Chimica Acta, 2008, 607, 219-226.	5.4	29

#	Article	IF	CITATIONS
19	Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry, 2007, 68, 383-393.	2.9	229
20	Towards a consensus structure of hypericin in solution: direct evidence for a single tautomer and different ionization states in protic and nonprotic solvents by the use of variable temperature gradient 1H NMR. Tetrahedron, 2002, 58, 4925-4929.	1.9	23