
Markus Amann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4317008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of aging on the work of breathing during exercise in healthy men. Journal of Applied Physiology, 2022, 132, 689-698.	2.5	3
2	Passive leg movement-induced vasodilation and exercise-induced sympathetic vasoconstriction. Autonomic Neuroscience: Basic and Clinical, 2022, 239, 102969.	2.8	3
3	Preâ€fatiguing Isometric Quadriceps Exercise Impairs Contralateral Quadriceps W' During Allâ€out and Not Target Torque Time to Task Failure Exercise. FASEB Journal, 2022, 36, .	0.5	0
4	Gene and protein expression of dorsal root ganglion sensory receptors in normotensive and hypertensive male rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R221-R226.	1.8	2
5	Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD. Journal of Applied Physiology, 2021, 130, 69-79.	2.5	8
6	Spinal cord injury and vascular function: evidence from diameter-matched vessels. Journal of Applied Physiology, 2021, 130, 562-570.	2.5	5
7	The muscle reflex and chemoreflex interaction: ventilatory implications for the exercising human. Journal of Applied Physiology, 2020, 129, 691-700.	2.5	9
8	The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human. Journal of Physiology, 2020, 598, 2311-2321.	2.9	29
9	Exercise Pressor Reflex Contributes to the Cardiovascular Abnormalities Characterizing. Hypertension, 2019, 74, 1468-1475.	2.7	15
10	Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved. Journal of Applied Physiology, 2019, 127, 1257-1266.	2.5	31
11	Reply to Drouin and Tschakovsky. Journal of Applied Physiology, 2019, 126, 797-797.	2.5	0
12	Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise. Journal of Physiology, 2018, 596, 1373-1384.	2.9	27
13	Revisiting the physiological effects of exercise training on autonomic regulation and chemoreflex control in heart failure: does ejection fraction matter?. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H464-H474.	3.2	11
14	Corticospinal excitability during fatiguing whole body exercise. Progress in Brain Research, 2018, 240, 219-246.	1.4	25
15	Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly. Experimental Gerontology, 2018, 111, 154-161.	2.8	20
16	Impact of age on the development of fatigue during large and small muscle mass exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R741-R750.	1.8	14
17	Fatigueâ€ŧelated group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise. Journal of Physiology, 2018, 596, 4789-4801.	2.9	64
18	Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction. Heart Failure Reviews, 2017, 22, 149-166.	3.9	28

MARKUS AMANN

#	Article	IF	CITATIONS
19	Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clinical Neurophysiology, 2017, 128, 44-55.	1.5	92
20	Fatigue diminishes motoneuronal excitability during cycling exercise. Journal of Neurophysiology, 2016, 116, 1743-1751.	1.8	39
21	Ensemble Input of Group III/IV Muscle Afferents to CNS: A Limiting Factor of Central Motor Drive During Endurance Exercise from Normoxia to Moderate Hypoxia. Advances in Experimental Medicine and Biology, 2016, 903, 325-342.	1.6	16
22	Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1479-H1489.	3.2	30
23	Less peripheral fatigue after prior exercise is not evidence against the regulation of the critical peripheral fatigue threshold. Journal of Applied Physiology, 2015, 119, 1520-1520.	2.5	10
24	Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H977-H985.	3.2	20
25	The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R934-R940.	1.8	61
26	Reply. Experimental Physiology, 2014, 99, 836-836.	2.0	2
27	Group III/IV muscle afferents impair limb blood in patients with chronic heart failure. International Journal of Cardiology, 2014, 174, 368-375.	1.7	75
28	Spinal μâ€opioid receptorâ€sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. Journal of Physiology, 2014, 592, 5011-5024.	2.9	94
29	Oxidative stress and chronic obstructive pulmonary disease: The impact of oral antioxidants on skeletal muscle fatigue. FASEB Journal, 2013, 27, 712.4.	0.5	0
30	Group III/IV muscle afferents impair limb blood flow during exercise in patients with heart failure. FASEB Journal, 2013, 27, 699.4.	0.5	0
31	Limb Movementâ€Induced Central and Peripheral Hemodynamics in Heart Failure: The Role of Afferent Feedback. FASEB Journal, 2013, 27, 943.21.	0.5	0
32	Reply to Marcora. Journal of Applied Physiology, 2011, 110, 1500-1500.	2.5	1
33	Implications of group III and IV muscle afferents for highâ€intensity endurance exercise performance in humans. Journal of Physiology, 2011, 589, 5299-5309.	2.9	205
34	Point: Afferent Feedback from Fatigued Locomotor Muscles is an Important Determinant of Endurance Exercise Performance. Journal of Applied Physiology, 2010, 108, 452-454.	2.5	39
35	Last Word on Point:Counterpoint: Afferent feedback from fatigued locomotor muscles is an important determinant of endurance exercise performance. Journal of Applied Physiology, 2010, 108, 469-469.	2.5	1
36	Oxygen transport from air to cell: The impact of age. FASEB Journal, 2010, 24, 1026.16.	0.5	0