Qiang Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4316731/publications.pdf

Version: 2024-02-01

74163 53794 6,379 123 45 75 citations h-index g-index papers 126 126 126 6320 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High area energy density of all-solid-state supercapacitor based on double-network hydrogel with high content of graphene/PANI fiber. Chemical Engineering Journal, 2022, 430, 133045.	12.7	34
2	Shear-induced alignment in 3D-printed nitrile rubber-reinforced glass fiber composites. Composites Part B: Engineering, 2022, 229, 109479.	12.0	13
3	Synthesis and evaluation of cationic polyacrylamide and polyacrylate flocculants for harvesting freshwater and marine microalgae. Chemical Engineering Journal, 2022, 433, 133623.	12.7	14
4	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	24.7	32
5	Recent developments of hydrogel based solar water purification technology. Materials Advances, 2022, 3, 1322-1340.	5.4	21
6	Tunable Size of Hierarchically Porous Alumina Ceramics Based on DIW 3D Printing Supramolecular Gel. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10998-11005.	8.0	16
7	DIW 3D printing of hybrid magnetorheological materials for application in soft robotic grippers. Composites Science and Technology, 2022, 223, 109409.	7.8	27
8	A flexible supercapacitor with high capacitance retention at an ultra-low temperature of -65.0 \hat{A}° C. Electrochimica Acta, 2022, 424, 140644.	5. 2	11
9	Recent Development of Atmospheric Water Harvesting Materials: A Review. ACS Materials Au, 2022, 2, 576-595.	6.0	19
10	Miktoarm Star Polymers: Synthesis and Applications. Chemistry of Materials, 2022, 34, 6188-6209.	6.7	19
11	Superhydrophobic surface based on nano-engineering for enhancing the durability of anticorrosion. Surface Engineering, 2021, 37, 288-298.	2.2	5
12	In situ ultrathin silica layer formation on polyamide thin-film composite membrane surface for enhanced forward osmosis performances. Journal of Membrane Science, 2021, 620, 118876.	8.2	25
13	Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy, 2021, 81, 105657.	16.0	47
14	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanosheets. ACS Central Science, 2021, 7, 671-680.	11.3	27
15	Triplet Fusion Upconversion with Oxygen Resistance in Aqueous Media. Analytical Chemistry, 2021, 93, 4641-4646.	6.5	2
16	Magnetoresistive micro-displacement sensor based on magnetorheological fluid. Smart Materials and Structures, 2021, 30, 045025.	3.5	5
17	A green and facile fabrication of rGO/FEVE nanocomposite coating for anti-corrosion application. Materials Chemistry and Physics, 2021, 263, 124382.	4.0	8
18	Amphiphilic Core Cross-Linked Star Polymers for the Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules, 2021, 22, 2554-2562.	5.4	4

#	Article	IF	Citations
19	Green preparation and enhanced gas barrier property of rubber nanocomposite film based on graphene oxide-induced chemical crosslinking. Polymer, 2021, 225, 123756.	3.8	25
20	Direct-ink-writing (DIW) 3D printing functional composite materials based on supra-molecular interaction. Composites Science and Technology, 2021, 215, 109013.	7.8	28
21	Ultralow Icing Adhesion of a Superhydrophobic Coating Based on the Synergistic Effect of Soft and Stiff Particles. Langmuir, 2021, 37, 12016-12026.	3.5	21
22	Ultra-high stability and magnetic response of magnetorheological fluids based on magnetic ionic liquids and carbonyl iron fibers. Journal of Rheology, 2021, 65, 1347-1359.	2.6	2
23	In situ synthesis of metalâ€free Nâ€GQD@g 3 N 4 photocatalyst for enhancing photocatalytic activity. Micro and Nano Letters, 2021, 16, 77-82.	1.3	2
24	Growing Patterned, Cross-linked Nanoscale Polymer Films from Organic and Inorganic Surfaces Using Ring-Opening Metathesis Polymerization. ACS Applied Materials & Interfaces, 2020, 12, 4041-4051.	8.0	15
25	Physical Aging Investigations of a Spirobisindane-Locked Polymer of Intrinsic Microporosity. , 2020, 2, 993-998.		11
26	From UV to NIR: A Fullâ€Spectrum Metalâ€Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angewandte Chemie - International Edition, 2020, 59, 21392-21396.	13.8	78
27	From UV to NIR: A Fullâ€Spectrum Metalâ€Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angewandte Chemie, 2020, 132, 21576-21580.	2.0	10
28	Tunable d-spacing of dry reduced graphene oxide nanosheets for enhancing re-dispersibility in organic solvents. Applied Surface Science, 2020, 531, 147375.	6.1	3
29	Progress and Perspectives Beyond Traditional RAFT Polymerization. Advanced Science, 2020, 7, 2001656.	11.2	139
30	Facile synthesis and anti-icing performance of superhydrophobic flower-like OTS-SiO2 with tunable size. Advanced Powder Technology, 2020, 31, 4533-4540.	4.1	16
31	Polyrotaxane-based thin film composite membranes for enhanced nanofiltration performance. Separation and Purification Technology, 2020, 246, 116893.	7.9	7
32	Facile preparation of robust superhydrophobic surface based on multiâ€scales nanoparticle. Polymer Engineering and Science, 2020, 60, 1785-1794.	3.1	6
33	Biomethane production from anaerobic co-digestion and steel-making slag: A new waste-to-resource pathway. Science of the Total Environment, 2020, 738, 139764.	8.0	12
34	Superhydrophobic Surface Based on Assembly of Nanoparticles for Application in Anti-Icing under Ultralow Temperature. ACS Applied Nano Materials, 2020, 3, 2047-2057.	5.0	44
35	Reduced administration frequency for the treatment of fungal keratitis: a sustained natamycin release from a micellar solution. Expert Opinion on Drug Delivery, 2020, 17, 407-421.	5.0	22
36	Spider-silk inspired polymeric networks by harnessing the mechanical potential of \hat{l}^2 -sheets through network guided assembly. Nature Communications, 2020, 11, 1630.	12.8	49

#	Article	IF	CITATIONS
37	High-throughput CO2 capture using PIM- $1@MOF$ based thin film composite membranes. Chemical Engineering Journal, 2020, 396, 125328.	12.7	78
38	CHAPTER 13. New Approaches Towards the Design of Tough Amphiphilic Polymeric Co-networks. RSC Polymer Chemistry Series, 2020, , 277-308.	0.2	1
39	Fentonâ€Chemistryâ€Mediated Radical Polymerization. Macromolecular Rapid Communications, 2019, 40, e1900220.	3.9	40
40	Postcombustion Carbon Capture Using Thin-Film Composite Membranes. Accounts of Chemical Research, 2019, 52, 1905-1914.	15.6	60
41	Redox-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization. Australian Journal of Chemistry, 2019, 72, 479.	0.9	11
42	Heterogeneously Catalyzed Fenton-Reversible Addition–Fragmentation Chain Transfer Polymerization in the Presence of Air. Macromolecules, 2019, 52, 3278-3287.	4.8	36
43	Sol-gel synthesis of ternary conducting polymer hydrogel for application in all-solid-state flexible supercapacitor. International Journal of Hydrogen Energy, 2019, 44, 6103-6115.	7.1	26
44	Facile synthesis of highly efficient photocatalysts based on organic small molecular co-catalyst. Applied Surface Science, 2019, 469, 553-563.	6.1	4
45	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	8.2	210
46	Synthesis of Janus POSS star polymer and exploring its compatibilization behavior for PLLA/PCL polymer blends. Polymer, 2018, 136, 84-91.	3.8	50
47	Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix. Composites Science and Technology, 2018, 162, 170-179.	7.8	51
48	Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy and Environmental Science, 2018, 11, 544-550.	30.8	125
49	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	10.3	109
50	Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018, 12, 11591-11599.	14.6	118
51	Improved Fenton Therapy Using Cancer Cell Hydrogen Peroxide. Australian Journal of Chemistry, 2018, 71, 826.	0.9	15
52	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie - International Edition, 2018, 57, 8597-8602.	13.8	50
53	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie, 2018, 130, 8733-8738.	2.0	22
54	Blood atalyzed RAFT Polymerization. Angewandte Chemie, 2018, 130, 10445-10449.	2.0	15

#	Article	IF	CITATIONS
55	Controlled RAFT polymerization facilitated by a nanostructured enzyme mimic. Polymer Chemistry, 2018, 9, 4448-4454.	3.9	20
56	Bloodâ€Catalyzed RAFT Polymerization. Angewandte Chemie - International Edition, 2018, 57, 10288-10292.	13.8	60
57	Trithiocarbonates as intrinsic photoredox catalysts and RAFT agents for oxygen tolerant controlled radical polymerization. Polymer Chemistry, 2017, 8, 1519-1526.	3.9	108
58	Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. Journal of Membrane Science, 2017, 535, 350-356.	8.2	75
59	Fentonâ€RAFT Polymerization: An "Onâ€Demand―Chainâ€Growth Method. Chemistry - A European Journal, 2017, 23, 7221-7226.	3.3	51
60	Sonoâ€RAFT Polymerization in Aqueous Medium. Angewandte Chemie - International Edition, 2017, 56, 12302-12306.	13.8	139
61	Development of a Robust PET-RAFT Polymerization Using Graphitic Carbon Nitride (g-C ₃ N ₄). Macromolecules, 2017, 50, 7509-7516.	4.8	108
62	MOF-Mediated Destruction of Cancer Using the Cell's Own Hydrogen Peroxide. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 33599-33608.	8.0	146
63	Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation. Polymer Chemistry, 2017, 8, 5972-5981.	3.9	27
64	Antifogging Surface Facilitated by Nanoscale Coatings with Controllable Hydrophobicity and Crossâ€Linking Density. Macromolecular Materials and Engineering, 2017, 302, 1600199.	3.6	20
65	Sonoâ€RAFT Polymerization in Aqueous Medium. Angewandte Chemie, 2017, 129, 12470-12474.	2.0	23
66	CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515, 54-62.	8.2	81
67	Spatial-controlled nanoengineered films prepared via rapid catalyst induced cross-linking. Polymer Chemistry, 2016, 7, 3251-3258.	3.9	5
68	Polypeptide-Based Macroporous Cryogels with Inherent Antimicrobial Properties: The Importance of a Macroporous Structure. ACS Macro Letters, 2016, 5, 552-557.	4.8	61
69	Controlled Polymerization: Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization (Adv. Sci. 9/2016). Advanced Science, 2016, 3, .	11.2	5
70	Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization. Advanced Science, 2016, 3, 1500394.	11.2	249
71	The use of reduced copper metal–organic frameworks to facilitate CuAAC click chemistry. Chemical Communications, 2016, 52, 12226-12229.	4.1	44
72	Blends of Fluorinated Additives with Highly Selective Thin-Film Composite Membranes to Increase CO ₂ Permeability for CO ₂ /N ₂ Gas Separation Applications. Industrial & Samp; Engineering Chemistry Research, 2016, 55, 8364-8372.	3.7	27

#	Article	IF	Citations
73	Observed Photoenhancement of RAFT Polymerizations under Fume Hood Lighting. ACS Macro Letters, 2016, 5, 1287-1292.	4.8	23
74	A novel solid state photocatalyst for living radical polymerization under UV irradiation. Scientific Reports, 2016, 6, 20779.	3.3	33
75	Star Polymers. Chemical Reviews, 2016, 116, 6743-6836.	47.7	653
76	Investigation into the photolytic stability of RAFT agents and the implications for photopolymerization reactions. Polymer Chemistry, 2016, 7, 4246-4253.	3.9	105
77	Stereoregular High-Density Bottlebrush Polymer and Its Organic Nanocrystal Stereocomplex through Triple-Helix Formation. Macromolecules, 2016, 49, 788-795.	4.8	16
78	Ultra-thin film composite mixed matrix membranes incorporating iron(⟨scp⟩iii⟨ scp⟩)–dopamine nanoparticles for CO⟨sub⟩2⟨ sub⟩separation. Nanoscale, 2016, 8, 8312-8323.	5.6	62
79	Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 6219-6228.	8.0	20
80	Fractionation of graphene oxide single nano-sheets in water-glycerol solutions using gradient centrifugation. Carbon, 2016, 103, 363-371.	10.3	24
81	A novel cross-linked nano-coating for carbon dioxide capture. Energy and Environmental Science, 2016, 9, 434-440.	30.8	92
82	Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. Journal of Membrane Science, 2016, 499, 191-200.	8.2	63
83	Synthesis of perfectly alternating copolymers for polymers of intrinsic microporosity. Polymer Chemistry, 2015, 6, 5003-5008.	3.9	28
84	Visible Light Mediated Controlled Radical Polymerization in the Absence of Exogenous Radical Sources or Catalysts. Macromolecules, 2015, 48, 3864-3872.	4.8	260
85	Cyclodextrin-based supramolecular polymeric nanoparticles for next generation gas separation membranes. Journal of Materials Chemistry A, 2015, 3, 14876-14886.	10.3	53
86	Tertiary amine catalyzed photo-induced controlled radical polymerization of methacrylates. Polymer Chemistry, 2015, 6, 5362-5368.	3.9	67
87	Cisplatin-Induced Formation of Biocompatible and Biodegradable Polypeptide-Based Vesicles for Targeted Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 2463-2474.	5.4	48
88	Highâ€performance thin film composite membranes with wellâ€defined poly(dimethylsiloxane)â€∢i>bà€poly(ethylene glycol) copolymer additives for CO ₂ separation. Journal of Polymer Science Part A, 2015, 53, 1500-1511.	2.3	31
89	A rapid and facile preparation of novel macroporous silicone-based cryogels via photo-induced thiol–ene click chemistry. Chemical Communications, 2015, 51, 17479-17482.	4.1	33
90	Controlled Formation of Star Polymer Nanoparticles via Visible Light Photopolymerization. ACS Macro Letters, 2015, 4, 1012-1016.	4.8	95

#	Article	IF	CITATIONS
91	Fabrication of ultra-thin polyrotaxane-based films via solid-state continuous assembly of polymers. Chemical Communications, 2015, 51, 2025-2028.	4.1	12
92	Synthesis of well dispersed polymer grafted metal–organic framework nanoparticles. Chemical Communications, 2015, 51, 15566-15569.	4.1	81
93	Degradable cross-linked polymer vesicles for the efficient delivery of platinum drugs. Polymer Chemistry, 2015, 6, 35-43.	3.9	25
94	Azobenzene-Functionalised Core Cross-Linked Star Polymers and their Host–Guest Interactions. Australian Journal of Chemistry, 2014, 67, 173.	0.9	13
95	Soft nanoparticles assembled from linear poly(ethylene glycol) and linear brush polydimethylsiloxane diblock copolymers. Journal of Polymer Science Part A, 2014, 52, 1251-1262.	2.3	13
96	Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization. Journal of Materials Science, 2014, 49, 1785-1793.	3.7	90
97	Cyclodextrinâ€Based Supramolecular Assemblies and Hydrogels: Recent Advances and Future Perspectives. Macromolecular Rapid Communications, 2014, 35, 1166-1184.	3.9	142
98	Soft polymeric nanoparticle additives for next generation gas separation membranes. Journal of Materials Chemistry A, 2014, 2, 4999.	10.3	71
99	Highly Efficient and Versatile Formation of Biocompatible Star Polymers in Pure Water and Their Stimuli-Responsive Self-Assembly. Macromolecules, 2014, 47, 7869-7877.	4.8	34
100	The effect of soft nanoparticles morphologies on thin film composite membrane performance. Journal of Materials Chemistry A, 2014, 2, 17751-17756.	10.3	50
101	Dynamic Performance of Duolayers at the Air/Water Interface. 1. Experimental Analysis. Journal of Physical Chemistry B, 2014, 118, 10919-10926.	2.6	4
102	Continuous assembly of polymers via solid phase reactions. Chemical Science, 2014, 5, 3374-3380.	7.4	11
103	Polyimide polydimethylsiloxane triblock copolymers for thin film composite gas separation membranes. Journal of Polymer Science Part A, 2014, 52, 3372-3382.	2.3	34
104	Highly permeable membrane materials for CO2 capture. Journal of Materials Chemistry A, 2013, 1, 13769.	10.3	64
105	Novel drug carriers: from grafted polymers to cross-linked vesicles. Chemical Communications, 2013, 49, 33-35.	4.1	43
106	An environmentally friendly and fast approach to prepare reduced graphite oxide with water and organic solvents solubility. Colloids and Surfaces B: Biointerfaces, 2013, 101, 171-176.	5.0	27
107	Organic Catalyst-Mediated Ring-Opening Polymerization for the Highly Efficient Synthesis of Polyester-Based Star Polymers. ACS Macro Letters, 2012, 1, 681-686.	4.8	43
108	Synthesis of Novel Core Crossâ€Linked Starâ€Based Polyrotaxane Endâ€Capped via "CuAAC―Click Chemistr Macromolecular Rapid Communications, 2012, 33, 2109-2114.	у _{з.9}	12

#	Article	IF	CITATIONS
109	Synthesis of novel cylindrical bottlebrush polypseudorotaxane via inclusion complexation of high density poly($\hat{\mu}$ -caprolactone) bottlebrush polymer and \hat{t} -cyclodextrins. Polymer Chemistry, 2012, 3, 343-351.	3.9	45
110	The effect of acrylamide-co-vinylpyrrolidinone copolymer on the depression of talc in mixed nickel mineral flotation. Minerals Engineering, 2011, 24, 449-454.	4.3	18
111	A Simple Way for Synthesis of Alkyneâ€Telechelic Poly(methyl methacrylate) via Single Electron Transfer Radical Coupling Reaction. Chinese Journal of Chemistry, 2010, 28, 1327-1330.	4.9	3
112	Investigation of nitroxide radical coupling reaction in wide temperature range and different catalyst system. Journal of Polymer Science Part A, 2010, 48, 2991-2999.	2.3	28
113	Oneâ€pot preparation of 3â€miktoarm star terpolymers via "click chemistry―and atom transfer nitroxide radical coupling reaction. Journal of Polymer Science Part A, 2009, 47, 986-990.	2.3	79
114	Single-Electron-Transfer Nitroxide-Radical-Coupling Reaction at Ambient Temperature: Application in the Synthesis of Block Copolymers. Macromolecules, 2009, 42, 4381-4383.	4.8	70
115	Oneâ€pot synthesis of heterograft copolymers via "graft onto―by atom transfer nitroxide radical coupling chemistry. Journal of Polymer Science Part A, 2008, 46, 6770-6779.	2.3	53
116	A New Strategy for Preparation of Graft Copolymers via "Graft onto―by Atom Transfer Nitroxide Radical Coupling Chemistry: Preparation of Poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl- <i>co</i> -ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50	4547.8Td (ox	xid læ) &i>grafi
117	2381-2387. One-Pot Synthesis of ABC Type Triblock Copolymers via a Combination of "Click Chemistry―and Atom Transfer Nitroxide Radical Coupling Chemistry. Macromolecules, 2008, 41, 4127-4135.	4.8	141
118	Synthesis of Amphiphilic Macrocyclic Graft Copolymer Consisting of a Poly(ethylene oxide) Ring and Multi-Polystyrene Lateral Chains. Macromolecules, 2006, 39, 5190-5193.	4.8	120
119	Synthesis of poly(ethylene oxide) with pending 2,2,6,6-tetramethylpiperidine-1-oxyl groups and its further initiation of the grafting polymerization of styrene. Journal of Polymer Science Part A, 2006, 44, 3836-3842.	2.3	18
120	Synthesis and self-assembly morphologies of amphiphilic multiblock copolymers [poly(ethylene) Tj ETQq0 0 0 rgE Science Part A, 2006, 44, 6071-6082.	3T /Overloo 2.3	ck 10 Tf 50 3 45
121	Synthesis of amphiphilic hyperbranched polyglycerol polymers and their application as template for size control of gold nanoparticles. Journal of Applied Polymer Science, 2006, 101, 509-514.	2.6	35
122	Synthesis of a thioether modified hyperbranched polyglycerol and its template effect on fabrication of CdS and CdSe nanoparticles. Journal of Applied Polymer Science, 2006, 102, 3679-3684.	2.6	15
123	Synthesis of a thermoresponsive shell-crosslinked 3-layer onion-like polymer particle with a hyperbranched polyglycerol core. Journal of Polymer Science Part A, 2005, 43, 5652-5660.	2.3	38