Martin W Brechbiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4316647/publications.pdf

Version: 2024-02-01

70 papers

3,927 citations

35 h-index 62 g-index

74 all docs

74 docs citations

times ranked

74

3516 citing authors

#	Article	IF	CITATIONS
1	General Method to Increase Carboxylic Acid Content on Nanodiamonds. Molecules, 2022, 27, 736.	3.8	6
2	Agent Optimization: Absorption, Distribution, Metabolism, Excretion, Dose, and Decay. Journal of Nuclear Medicine, 2021, 62, 455-456.	5.0	1
3	National Cancer Institute support for targeted alpha-emitter therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 49, 64-72.	6.4	3
4	Reply to the â€~Comment on "Investigation of Zr(iv) and 89Zr(iv) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imagingâ€â€™ by A. Bianchi and M. Savastano, Chem. Commun., 2020, 56, D0CC01189D. Chemical Communications, 2020, 56, 12667-12668.	4.1	2
5	⁹⁰ Y-Daclizumab (Anti-CD25), High-Dose Carmustine, Etoposide, Cytarabine, and Melphalan Chemotherapy and Autologous Hematopoietic Stem Cell Transplant Yielded Sustained Complete Remissions in 4 Patients with Recurrent Hodgkin's Lymphoma. Cancer Biotherapy and Radiopharmaceuticals. 2020, 35, 249-261.	1.0	9
6	Exploration of a F(ab′)2 Fragment as the Targeting Agent of α-Radiation Therapy: A Comparison of the Therapeutic Benefit of Intraperitoneal and Intravenous Administered Radioimmunotherapy. Cancer Biotherapy and Radiopharmaceuticals, 2018, 33, 182-193.	1.0	9
7	Targeted α-Particle Radiation Therapy of HER1-Positive Disseminated Intraperitoneal Disease: An Investigation of the Human Anti-EGFR Monoclonal Antibody, Panitumumab. Translational Oncology, 2017, 10, 535-545.	3.7	17
8	Comparative studies on the therapeutic benefit of targeted \hat{l} ±-particle radiation therapy for the treatment of disseminated intraperitoneal disease. Dalton Transactions, 2017, 46, 14591-14601.	3.3	6
9	The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget, 2016, 7, 37762-37772.	1.8	96
10	Mechanisms of Cell Killing Response from Low Linear Energy Transfer (LET) Radiation Originating from 177Lu Radioimmunotherapy Targeting Disseminated Intraperitoneal Tumor Xenografts. International Journal of Molecular Sciences, 2016, 17, 736.	4.1	26
11	Unexpected Behavior of the Heaviest Halogen Astatine in the Nucleophilic Substitution of Aryliodonium Salts. Chemistry - A European Journal, 2016, 22, 12332-12339.	3.3	33
12	Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor. MAbs, 2016, 8, 775-786.	5.2	7
13	Unexpected Behavior of the Heaviest Halogen Astatine in the Nucleophilic Substitution of Aryliodonium Salts. Chemistry - A European Journal, 2016, 22, 12205-12205.	3 . 3	0
14	Engineering anti-Lewis-Y hu3S193 antibodies with improved therapeutic ratio for radioimmunotherapy of epithelial cancers. EJNMMI Research, 2016, 6, 26.	2.5	13
15	Cell Killing Mechanisms and Impact on Gene Expression by Gemcitabine and 212Pb-Trastuzumab Treatment in a Disseminated i.p. Tumor Model. PLoS ONE, 2016, 11, e0159904.	2.5	14
16	Toxicological Studies of 212Pb Intravenously or Intraperitoneally Injected into Mice for a Phase 1 Trial. Pharmaceuticals, 2015, 8, 416-434.	3.8	16
17	Bench to Bedside: Stability Studies of GMP Produced Trastuzumab-TCMC in Support of a Clinical Trial. Pharmaceuticals, 2015, 8, 435-454.	3.8	13
18	Synthesis and characterization of gadoliniumâ€"Peptidomimetic complex as an αvβ3 integrin targeted MR contrast agent. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2056-2059.	2.2	6

#	Article	IF	CITATIONS
19	⁹⁰ Y-daclizumab, an anti-CD25 monoclonal antibody, provided responses in 50% of patients with relapsed Hodgkin's lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13045-13050.	7.1	44
20	Application of ²¹² Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AlMS Medical Science, 2015, 2, 228-245.	0.4	46
21	Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomedical Optics Express, 2014, 5, 1190.	2.9	83
22	Rational Design, Synthesis, and Evaluation of Tetrahydroxamic Acid Chelators for Stable Complexation of Zirconium(IV). Chemistry - A European Journal, 2014, 20, 5584-5591.	3.3	63
23	Impact of $\hat{I}\pm$ -Targeted Radiation Therapy on Gene Expression in a Pre-Clinical Model for Disseminated Peritoneal Disease when Combined with Paclitaxel. PLoS ONE, 2014, 9, e108511.	2.5	13
24	Methodology for labeling proteins and peptides with lead-212 (212Pb). Nuclear Medicine and Biology, 2013, 40, 592-599.	0.6	52
25	Investigation of Zr(<scp>iv</scp>) and ⁸⁹ Zr(<scp>iv</scp>) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chemical Communications, 2013, 49, 1002-1004.	4.1	99
26	Gene expression profiling upon ²¹² Pbâ€ <scp>TCMC</scp> â€trastuzumab treatment in the <scp>LS</scp> â€174T i.p. xenograft model. Cancer Medicine, 2013, 2, 646-653.	2.8	21
27	Molecular Pathways: Targeted α-Particle Radiation Therapy. Clinical Cancer Research, 2013, 19, 530-537.	7.0	159
28	212Pb-Radioimmunotherapy Induces G2 Cell-Cycle Arrest and Delays DNA Damage Repair in Tumor Xenografts in a Model for Disseminated Intraperitoneal Disease. Molecular Cancer Therapeutics, 2012, 11, 639-648.	4.1	48
29	An overview of targeted alpha therapy. Tumor Biology, 2012, 33, 573-590.	1.8	180
30	In vitro and in vivo pre-clinical analysis of a F(ab')2 fragment of panitumumab for molecular imaging and therapy of HER1-positive cancers. EJNMMI Research, $2011, 1, .$	2.5	54
31	Targeting HER2. MAbs, 2010, 2, 550-564.	5.2	50
32	Cetuximab: Preclinical Evaluation of a Monoclonal Antibody Targeting EGFR for Radioimmunodiagnostic and Radioimmunotherapeutic Applications. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 619-632.	1.0	67
33	Effective Treatment of Established Human Breast Tumor Xenografts in Immunodeficient Mice with a Single Dose of the α-Emitting Radioisotope Astatine-211 Conjugated to Anti-HER2/ <i>neu</i> Clinical Cancer Research, 2008, 14, 875-882.	7.0	56
34	Yttrium-90 Radiolabeled Humanized Monoclonal Antibody to CD25 in Refractory and Relapsed Hodgkin's Lymphoma. Blood, 2008, 112, 231-231.	1.4	6
35	Preparation and in vivo evaluation of a novel stabilized linker for 211At labeling of protein. Nuclear Medicine and Biology, 2006, 33, 469-480.	0.6	20
36	Pyridine-Ring Alkylation of Cytotoxicr-1,c-3,c-5-Tris[(2-pyridylmethyl)amino]cyclohexane Chelators: Structural and Electronic Properties of the MnII, FeII, NiII, CuII and ZnII Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 3971-3982.	2.0	18

#	Article	IF	Citations
37	α-Particle Radioimmunotherapy of Disseminated Peritoneal Disease Using a 212Pb-Labeled Radioimmunoconjugate Targeting HER2. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 557-568.	1.0	95
38	Radioimmunotherapy of Human Colon Carcinoma Xenografts Using a213Bi-Labeled Domain-Deleted Humanized Monoclonal Antibody. Cancer Biotherapy and Radiopharmaceuticals, 2004, 19, 135-147.	1.0	46
39	Preparation and in vivo evaluation of novel linkers for 211At labeling of proteins. Nuclear Medicine and Biology, 2004, 31, 1061-1071.	0.6	19
40	A Short and Efficient Synthesis of Mono-substituted 1,4,7-Triazacyclononanes. Synthetic Communications, 2003, 33, 1147-1154.	2.1	10
41	Steric effects caused by N-alkylation of the tripodal chelator N,Nâ \in 2,Nâ \in 3-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane (tachpyr): structural and electronic properties of the Mn(ii), Co(ii), Ni(ii), Cu(ii) and Zn(ii) complexes. Dalton Transactions, 2003, , 318-324.	3.3	16
42	Gadolinium-labeled dendrimers as biometric nanoprobes to detect vascular permeability. Journal of Materials Chemistry, 2003, 13, 1523.	6.7	44
43	Novel Iodinated Dendritic Nanoparticles for Computed Tomography (CT) Imaging. Nano Letters, 2002, 2, 595-599.	9.1	97
44	In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nuclear Medicine and Biology, 2002, 29, 431-442.	0.6	103
45	Stereoselective and regioselective synthesis of azepane and azepine derivatives via piperidine ring expansion. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2080-2086.	1.3	20
46	Targeted α particle immunotherapy for myeloid leukemia. Blood, 2002, 100, 1233-1239.	1.4	430
47	Targeted alpha particle immunotherapy for myeloid leukemia. Blood, 2002, 100, 1233-9.	1.4	143
48	Targeting properties of an anti-CD16/anti-CD30 bispecific antibody in an in vivo system. Cancer Immunology, Immunotherapy, 2001, 50, 102-108.	4.2	9
49	Microâ€MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: Reference to pharmacokinetic properties of dendrimerâ€based MR contrast agents. Journal of Magnetic Resonance Imaging, 2001, 14, 705-713.	3.4	86
50	Novel intravascular macromolecular MRI contrast agent with generation-4 polyamidoamine dendrimer core: Accelerated renal excretion with coinjection of lysine. Magnetic Resonance in Medicine, 2001, 46, 457-464.	3.0	41
51	3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magnetic Resonance in Medicine, 2001, 46, 579-585.	3.0	45
52	Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magnetic Resonance in Medicine, 2001, 46, 781-788.	3.0	116
53	Novel liver macromolecular MR contrast agent with a polypropylenimine diaminobutyl dendrimer core: Comparison to the vascular MR contrast agent with the polyamidoamine dendrimer core. Magnetic Resonance in Medicine, 2001, 46, 795-802.	3.0	79
54	Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magnetic Resonance in Medicine, 2001, 46, 1169-1173.	3.0	127

#	Article	IF	Citations
55	3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magnetic Resonance in Medicine, 2001, 45, 454-460.	3.0	143
56	Positive effects of polyethylene glycol conjugation to generationâ€4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magnetic Resonance in Medicine, 2001, 46, 781-788.	3.0	2
57	Anti-HER2 Radioimmunotherapy. Breast Disease, 2000, 11, 125-132.	0.8	5
58	First Noncovalently Bound Calix[4] arene-GdIII-Albumin Complex. Angewandte Chemie - International Edition, 2000, 39, 1641-1643.	13.8	27
59	Synthesis and biodistribution study of a new211At-calix[4] arene complex. Journal of Labelled Compounds and Radiopharmaceuticals, 2000, 43, 1219-1225.	1.0	17
60	Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. European Journal of Nuclear Medicine and Molecular Imaging, 2000, 27, 1334-1339.	2.1	97
61	Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nuclear Medicine and Biology, 2000, 27, 93-100.	0.6	128
62	Synthesis, Conjugation, and Radiolabeling of a Novel Bifunctional Chelating Agent for 225Ac Radioimmunotherapy Applications. Bioconjugate Chemistry, 2000, 11, 510-519.	3.6	73
63	Synthesis and relaxometry of high-generation (G = 5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. Journal of Magnetic Resonance Imaging, 1999, 9, 348-352.	3.4	234
64	111Indium-labeled monoclonal antibody K1: Biodistribution study in nude mice bearing a human carcinoma xenograft expressing mesothelin., 1999, 80, 559-563.		33
65	Evaluation of methods for large scale preparation of antibody ligand conjugates. Nuclear Medicine and Biology, 1999, 26, 339-342.	0.6	11
66	In vivo evaluation of a lead-labeled monoclonal antibody using the DOTA ligand. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 471-480.	6.4	19
67	An Improved Generator for the Production of ²¹³ Bi from ²²⁵ Ac. Radiochimica Acta, 1997, 79, 141-144.	1.2	45
68	Comparative biodistribution of indium- and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1 B4M-DTPA) or 2-(p-SCN-Bz)-1,4,7,10-tetraazacyclododecane tetraacetic acid (2B-DOTA). European Journal of Nuclear Medicine and Molecular Imaging, 1994, 21, 640-646.	2.1	40
69	Spectrophotometric method for the determination of a bifunctional DTPA ligand in DTPA-monoclonal antibody conjugates. Bioconjugate Chemistry, 1992, 3, 342-345.	3.6	134
70	Selection of a dtpa chelate conjugate for monoclonal antibody targeting to a human colonic tumor in nude mice. International Journal of Cancer, 1990, 46, 79-85.	5.1	30