Paul R Armstrong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4316589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting single kernel and bulk milled rice alkali spreading value and gelatinization temperature class using NIR spectroscopy. Cereal Chemistry, 2022, 99, 1234-1245.	2.2	3
2	Classification approaches for sorting maize (<i>Zea mays</i> subsp. <i>mays</i>) haploids using singleâ€kernel nearâ€infrared spectroscopy. Plant Breeding, 2020, 139, 1103-1112.	1.9	4
3	Protein, weight, and oil prediction by singleâ€seed nearâ€infrared spectroscopy for selection of seed quality and yield traits in pea (<scp><i>Pisum sativum</i></scp>). Journal of the Science of Food and Agriculture, 2020, 100, 3488-3497.	3.5	19
4	Detection of chalk in single kernels of longâ€grain milled rice using imaging and visible/nearâ€infrared instruments. Cereal Chemistry, 2019, 96, 1103-1111.	2.2	10
5	Quantification of betaglucans, lipid and protein contents in whole oat groats (<i>Avena sativa</i> L.) using near infrared reflectance spectroscopy. Journal of Near Infrared Spectroscopy, 2017, 25, 172-179.	1.5	12
6	Discriminating Oat and Groat Kernels from Other Grains Using Nearâ€Infrared Spectroscopy. Cereal Chemistry, 2017, 94, 458-463.	2.2	2
7	Enhanced Single Seed Trait Predictions in Soybean (<i>Glycine max</i>) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy. Journal of Agricultural and Food Chemistry, 2016, 64, 1079-1086.	5.2	23
8	Detecting and Segregating Black Tipâ€Damaged Wheat Kernels Using Visible and Nearâ€Infrared Spectroscopy. Cereal Chemistry, 2015, 92, 358-363.	2.2	3
9	Development and Evaluation of a Near-Infrared Instrument for Single-Seed Compositional Measurement of Wheat Kernels. Cereal Chemistry, 2014, 91, 23-28.	2.2	11
10	Single-Kernel Ionomic Profiles Are Highly Heritable Indicators of Genetic and Environmental Influences on Elemental Accumulation in Maize Grain (Zea mays). PLoS ONE, 2014, 9, e87628.	2.5	64
11	Analysis of Maize (Zea mays) Kernel Density and Volume Using Microcomputed Tomography and Single-Kernel Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 10872-10880.	5.2	38
12	Prediction of maize seed attributes using a rapid single kernel near infrared instrument. Journal of Cereal Science, 2009, 50, 381-387.	3.7	54
13	Highâ€Throughput Nearâ€Infrared Reflectance Spectroscopy for Predicting Quantitative and Qualitative Composition Phenotypes of Individual Maize Kernels. Cereal Chemistry, 2009, 86, 556-564.	2.2	78