Steven Howdle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/431608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?. Journal of Antimicrobial Chemotherapy, 2004, 54, 1019-1024.	3.0	655
2	Water-in-Carbon Dioxide Microemulsions: An Environment for Hydrophiles Including Proteins. Science, 1996, 271, 624-626.	12.6	554
3	Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Advanced Drug Delivery Reviews, 2008, 60, 373-387.	13.7	254
4	Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterialsElectronic supplementary information (ESI) available: video clips relating to work carried out in the Howdle research group. See http://www.rsc.org/suppdata/jm/b3/b315262f/. Journal of Materials Chemistry, 2004, 14, 1663.	6.7	252
5	Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone, 2001, 29, 523-531.	2.9	249
6	Growth factor release from tissue engineering scaffolds. Journal of Pharmacy and Pharmacology, 2010, 53, 1427-1437.	2.4	234
7	Water in Supercritical Carbon Dioxide Microemulsions:Â Spectroscopic Investigation of a New Environment for Aqueous Inorganic Chemistry. Journal of the American Chemical Society, 1997, 119, 6399-6406.	13.7	218
8	The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials, 2010, 31, 1242-1250.	11.4	214
9	PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science, 2012, 37, 659-685.	24.7	204
10	The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials, 2006, 27, 5909-5917.	11.4	201
11	Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. , 2007, 14, 64-77.		200
12	Supercritical fluid technologies and tissue engineering scaffolds. Current Opinion in Solid State and Materials Science, 2004, 8, 313-321.	11.5	197
13	Supercritical fluid mixing: preparation of thermally sensitive polymer composites containing bioactive materials. Chemical Communications, 2001, , 109-110.	4.1	191
14	Vibrational Spectroscopy in Supercritical Fluids: From Analysis and Hydrogen Bonding to Polymers and Synthesis. Angewandte Chemie International Edition in English, 1995, 34, 1275-1295.	4.4	168
15	The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials, 2005, 26, 697-702.	11.4	162
16	Adenoviral BMP-2 Gene Transfer in Mesenchymal Stem Cells: In Vitro and in Vivo Bone Formation on Biodegradable Polymer Scaffolds. Biochemical and Biophysical Research Communications, 2002, 292, 144-152.	2.1	160
17	Induction of Human Osteoprogenitor Chemotaxis, Proliferation, Differentiation, and Bone Formation by Osteoblast Stimulating Factor-1/Pleiotrophin: Osteoconductive Biomimetic Scaffolds for Tissue Engineering. Journal of Bone and Mineral Research, 2003, 18, 47-57.	2.8	149
18	The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials, 2008, 29, 1892-1900.	11.4	138

#	Article	IF	CITATIONS
19	Solubilization in nonionic reverse micelles in carbon dioxide. AICHE Journal, 1994, 40, 543-555.	3.6	136
20	In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials, 2004, 25, 5507-5514.	11.4	133
21	Three-Dimensional Bioactive and Biodegradable Scaffolds Fabricated by Surface-Selective Laser Sintering. Advanced Materials, 2005, 17, 327-330.	21.0	130
22	Porous inverse vulcanised polymers for mercury capture. Chemical Communications, 2016, 52, 5383-5386.	4.1	130
23	Enzyme-Catalyzed Ring-Opening Polymerization of Îμ-Caprolactone in Supercritical Carbon Dioxide. Macromolecules, 2004, 37, 2450-2453.	4.8	124
24	Clean preparation of nanoparticulate metals in porous supports: a supercritical routeElectronic supplementary information (ESI) available: synthesis of precursor complexes; preparation of aerogels. See http://www.rsc.org/suppdata/jm/b1/b111111f/ Journal of Materials Chemistry, 2002, 12, 1898-1905.	6.7	120
25	Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide. European Polymer Journal, 2006, 42, 3145-3151.	5.4	119
26	Controlling Chain Growth:Â A New Strategy to Hyperbranched Materials. Macromolecules, 2007, 40, 7184-7194.	4.8	118
27	Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses. Biomaterials, 2004, 25, 3559-3568.	11.4	115
28	Can Block Copolymers Be Synthesized by a Single-Step Chemoenzymatic Route in Supercritical Carbon Dioxide?. Journal of the American Chemical Society, 2005, 127, 2384-2385.	13.7	114
29	Human Osteoprogenitor Bone Formation Using Encapsulated Bone Morphogenetic Protein 2 in Porous Polymer Scaffolds. Tissue Engineering, 2004, 10, 1037-1045.	4.6	109
30	Using Plasma Deposits to Promote Cell Population of the Porous Interior of Three-Dimensional Poly(D,L-Lactic Acid) Tissue-Engineering Scaffolds. Advanced Functional Materials, 2005, 15, 1134-1140.	14.9	109
31	Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems. Chemical Society Reviews, 2016, 45, 5055-5084.	38.1	108
32	Organometallic chemistry in supercritical fluids. The generation and detection of dinitrogen and nonclassical dihydrogen complexes of Group 6, 7, and 8 transition metals at room temperature. Journal of the American Chemical Society, 1990, 112, 4804-4813.	13.7	107
33	The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomaterialia, 2012, 8, 61-71.	8.3	101
34	The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. Journal of Controlled Release, 2005, 101, 85-92.	9.9	100
35	Surfaceâ€Enhanced Raman Scattering Using Microstructured Optical Fiber Substrates. Advanced Functional Materials, 2007, 17, 2024-2030.	14.9	97
36	Successful Dispersion Polymerization in Supercritical CO ₂ Using Polyvinylalkylate Hydrocarbon Surfactants Synthesized and Anchored via RAFT. Journal of the American Chemical Society, 2008, 130, 12242-12243.	13.7	96

#	Article	IF	CITATIONS
37	Using a Core–Sheath Distribution of Surface Chemistry through 3D Tissue Engineering Scaffolds to Control Cell Ingress. Advanced Materials, 2006, 18, 1406-1410.	21.0	95
38	Poly-3-hydroxyoctanoate P(3HO), a Medium Chain Length Polyhydroxyalkanoate Homopolymer from Pseudomonas mendocina. Biomacromolecules, 2011, 12, 2126-2136.	5.4	93
39	One-Pot Synthesis of Block Copolymers in Supercritical Carbon Dioxide: A Simple Versatile Route to Nanostructured Microparticles. Journal of the American Chemical Society, 2012, 134, 4772-4781.	13.7	93
40	Effect of PEGylation on the Toxicity and Permeability Enhancement of Chitosan. Biomacromolecules, 2010, 11, 2854-2865.	5.4	92
41	Drug delivery goes supercritical. Materials Today, 2005, 8, 42-48.	14.2	91
42	Silver Nanoparticle Impregnated Polycarbonate Substrates for Surface Enhanced Raman Spectroscopy. Advanced Functional Materials, 2008, 18, 1265-1271.	14.9	89
43	Progress in the synthesis of sustainable polymers from terpenes and terpenoids. Green Materials, 2016, 4, 115-134.	2.1	89
44	Immunoselection and adenoviral genetic modulation of human osteoprogenitors: in vivo bone formation on PLA scaffold. Biochemical and Biophysical Research Communications, 2002, 299, 208-215.	2.1	88
45	Controlled Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide via RAFT. Macromolecules, 2008, 41, 1215-1222.	4.8	88
46	Free Radical Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide Using a Pseudo-Graft Stabilizer:  Effect of Monomer, Initiator, and Stabilizer Concentrations. Macromolecules, 2000, 33, 9222-9227.	4.8	86
47	A highly effective gene delivery vector – hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chemical Communications, 2010, 46, 4698.	4.1	86
48	Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation. Biomaterials, 2001, 22, 337-347.	11.4	85
49	Laser stereolithography and supercritical fluid processing for custom-designed implant fabrication. Journal of Materials Science: Materials in Medicine, 2004, 15, 123-128.	3.6	85
50	Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(dl·lactic acid) scaffolds induce angiogenesis in vitro. Biochemical and Biophysical Research Communications, 2007, 352, 135-141.	2.1	84
51	Kinetics of Enzymatic Ring-Opening Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromolecules, 2006, 39, 7967-7972.	4.8	83
52	A facile and green route to terpene derived acrylate and methacrylate monomers and simple free radical polymerisation to yield new renewable polymers and coatings. Polymer Chemistry, 2016, 7, 2882-2887.	3.9	80
53	Advantages of Block Copolymer Synthesis by RAFT-Controlled Dispersion Polymerization in Supercritical Carbon Dioxide. Macromolecules, 2013, 46, 6843-6851.	4.8	78
54	Human Osteoprogenitor Bone Formation Using Encapsulated Bone Morphogenetic Protein 2 in Porous Polymer Scaffolds. Tissue Engineering, 2004, 10, 1037-1045.	4.6	78

#	Article	IF	CITATIONS
55	Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: In vivo studies. Journal of Controlled Release, 2010, 141, 153-160.	9.9	76
56	Thermoresponsive and Photocrosslinkable PEGMEMA-PPGMA-EGDMA Copolymers from a One-Step ATRP Synthesis. Biomacromolecules, 2009, 10, 822-828.	5.4	73
57	Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide with a Monofunctional Pseudo-Graft Stabilizer. Macromolecules, 2000, 33, 237-239.	4.8	72
58	Supercritical carbon dioxide: putting the fizz into biomaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 249-261.	3.4	70
59	Dispersion polymerisation in supercritical CO2 using macro-RAFT agents. Chemical Communications, 2008, , 5942.	4.1	70
60	Electrodeposition of metals from supercritical fluids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14768-14772.	7.1	70
61	Photo-Cross-Linked Hydrogels from Thermoresponsive PEGMEMA-PPGMA-EGDMA Copolymers Containing Multiple Methacrylate Groups: Mechanical Property, Swelling, Protein Release, and Cytotoxicity. Biomacromolecules, 2009, 10, 2895-2903.	5.4	69
62	Fluorinated Graft Stabilizers for Polymerization in Supercritical Carbon Dioxide:  The Effect of Stabilizer Architecture. Macromolecules, 2001, 34, 20-25.	4.8	68
63	Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomaterialia, 2009, 5, 2063-2071.	8.3	68
64	Supercritical fluids: A route to palladium-aerogel nanocomposites. Journal of Materials Chemistry, 2004, 14, 1212.	6.7	67
65	Synthesis of Semifluorinated Block Copolymers Containing Poly(ε-caprolactone) by the Combination of ATRP and Enzymatic ROP in scCO2. Macromolecules, 2006, 39, 633-640.	4.8	67
66	Sorption and swelling of poly(<scp>DL</scp> â€lactic acid) and poly(lacticâ€ <i>co</i> â€glycolic acid) in supercritical CO ₂ : An experimental and modeling study. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 483-496.	2.1	67
67	Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nature Chemistry, 2013, 5, 1058-1065.	13.6	67
68	Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications. European Polymer Journal, 2007, 43, 307-314.	5.4	66
69	One-Step Chemoenzymatic Synthesis of Poly(ε-caprolactone-block-methyl methacrylate) in Supercritical CO2. Macromolecules, 2006, 39, 5352-5358.	4.8	65
70	"Living―Polymer Beads in Supercritical CO2. Macromolecules, 2007, 40, 2965-2967.	4.8	65
71	Synthesis and Phase Behavior of CO ₂ -Soluble Hydrocarbon Copolymer: Poly(vinyl) Tj ETQq1 1 0.7	84314 rgBT 4.8	Overlock 10
72	Simultaneous enzymatic ring opening polymerisation and RAFT-mediated polymerisation in	4.1	64

supercritical CO2. Chemical Communications, 2006, , 4383.

64 4.1

#	Article	IF	CITATIONS
73	Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy. Journal of Biomedical Materials Research Part B, 2000, 50, 536-545.	3.1	63
74	Synthesis of Graft Copolymers by the Combination of ATRP and Enzymatic ROP in scCO2. Macromolecules, 2006, 39, 9080-9086.	4.8	62
75	Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomaterialia, 2010, 6, 130-136.	8.3	62
76	Thermal and diffusion processes in laser-induced stress relaxation and reshaping of cartilage. Journal of Biomechanics, 1997, 30, 813-817.	2.1	61
77	Incorporation of Proteins into Polymer Materials by a Novel Supercritical Fluid Processing Method. Advanced Materials, 2002, 14, 1802-1804.	21.0	59
78	Putting the fizz into chemistry: applications of supercritical carbon dioxide in tissue engineering, drug delivery and synthesis of novel block copolymers. Biochemical Society Transactions, 2007, 35, 516-521.	3.4	59
79	Macromonomer surfactants for the polymerisation of methyl methacrylate in supercritical CO2. Polymer, 2000, 41, 6715-6721.	3.8	58
80	Large-aperture variable-volume view cell for the determination of phase-equilibria in high pressure systems and supercritical fluids. Review of Scientific Instruments, 2004, 75, 3233-3236.	1.3	57
81	Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide:Â An Investigation into Stabilizer Anchor Group. Macromolecules, 2005, 38, 3271-3282.	4.8	56
82	Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer, 2014, 55, 435-444.	3.8	56
83	The effects of fluid density on the rotational Raman spectrum of hydrogen dissolved in supercritical carbon dioxide. Chemical Physics Letters, 1993, 214, 215-219.	2.6	55
84	Probing Vapor/Liquid Equilibria of Near-Critical Binary Gas Mixtures by Acoustic Measurements. The Journal of Physical Chemistry, 1996, 100, 9522-9526.	2.9	55
85	Amorphous Vanadium Phosphate Catalysts from Supercritical Antisolvent Precipitation. Journal of Catalysis, 2001, 197, 232-235.	6.2	53
86	Preparation of a Poly(methyl methacrylate)/Ultrahigh Molecular Weight Polyethylene Blend Using Supercritical Carbon Dioxide and the Identification of a Three-Phase Structure:Â An Atomic Force Microscopy Study. Macromolecules, 2002, 35, 8869-8877.	4.8	53
87	Controlling protein release from scaffolds using polymer blends and composites. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 82-89.	4.3	53
88	Gene therapy used for tissue engineering applicationsâ€. Journal of Pharmacy and Pharmacology, 2010, 59, 329-350.	2.4	51
89	Synthesis and application of new CO2-soluble vinyl pivalate hydrocarbon stabilisers via RAFT polymerisation. Polymer Chemistry, 2011, 2, 1293.	3.9	51
90	New renewably-sourced polyesters from limonene-derived monomers. Green Chemistry, 2019, 21, 149-156.	9.0	51

#	Article	IF	CITATIONS
91	Silver(I) Coordination Polymers Using Thioether Macrocycle Building Blocks. Inorganic Chemistry, 2000, 39, 1035-1038.	4.0	50
92	Dispersion Atom Transfer Radical Polymerization of Vinyl Monomers in Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 8575-8583.	4.8	50
93	Preparation of cross-linked microparticles of poly(glycidyl methacrylate) by dispersion polymerization of glycidyl methacrylate using a PDMS macromonomer as stabilizer in supercritical carbon dioxide. Polymer, 2002, 43, 6653-6659.	3.8	49
94	Modular Construction of Multifunctional Bioresponsive Cell-Targeted Nanoparticles for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 156-168.	3.6	49
95	Dynamic IR spectroscopy: occurrence and predictability of coalescence in the carbon monoxide stretching vibrations of 13CO-enriched tricarbonyl(.eta.4-norbornadiene)iron. Journal of the American Chemical Society, 1991, 113, 8347-8353.	13.7	48
96	Suspension Polymerization ofl-Lactide in Supercritical Carbon Dioxide in the Presence of a Triblock Copolymer Stabilizer. Macromolecules, 2003, 36, 5908-5911.	4.8	47
97	A comparison of polymer and polymer–hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An <i>in vitro</i> and <i>in vivo</i> study. Journal of Biomedical Materials Research - Part A, 2014, 102, 2613-2624.	4.0	47
98	Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity. Journal of Materials Science, 2006, 41, 4197.	3.7	46
99	High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly(ε-caprolactone). Polymer, 2015, 69, 17-24.	3.8	46
100	Mammalian cell survival and processing in supercritical CO2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7426-7431.	7.1	45
101	In vitro antimicrobial activity of silver-processed catheters for neurosurgery. Journal of Antimicrobial Chemotherapy, 2010, 65, 258-265.	3.0	45
102	New biomaterials from renewable resources – amphiphilic block copolymers from Β-decalactone. Polymer Chemistry, 2015, 6, 7196-7210.	3.9	45
103	Preparation of polymer–nanoparticle composite beads by a nanoparticle-stabilised suspension polymerisation. Journal of Materials Chemistry, 2007, 17, 4382.	6.7	44
104	The application of human bone marrow stromal cells and poly(dl-lactic acid) as a biological bone grafting. Biomaterials, 2008, 29, 3221-3227.	11.4	44
105	Studies on the interactions of CO2 with biodegradable poly(dl-lactic acid) and poly(lactic) Tj ETQq1 1 0.784314 2010, 51, 1425-1431.	gBT /Over 3.8	lock 10 Tf 50 43
106	Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers, 2021, 253, 117277.	10.2	43
107	Infrared spectroscopy and chemistry in liquid rare-gas solvents. Faraday Discussions of the Chemical Society, 1988, 86, 271.	2.2	42
108	Novel Graft Stabilizers for the Free Radical Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide. Macromolecules, 2000, 33, 1996-1999.	4.8	42

#	Article	IF	CITATIONS
109	Controlled Dispersion Polymerization in Supercritical Carbon Dioxide. Australian Journal of Chemistry, 2009, 62, 786.	0.9	42
110	Macroparticle distribution and chemical composition of laser deposited apatite coatings. Applied Physics Letters, 1995, 66, 2451-2453.	3.3	41
111	Tin(II) Ethyl Hexanoate Catalyzed Precipitation Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 1190-1195.	4.8	41
112	The preparation of gold nanoparticle composites using supercritical carbon dioxide. Journal of Supercritical Fluids, 2007, 42, 282-287.	3.2	41
113	Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomaterials Science, 2017, 5, 532-550.	5.4	41
114	In-Situ Investigation on the Mechanism of Dispersion Polymerization in Supercritical Carbon Dioxide. Macromolecules, 2000, 33, 4008-4014.	4.8	39
115	Synthesis and CO2Solubility Studies of Poly(ether carbonate)s and Poly(ether ester)s Produced by Step Growth Polymerization. Macromolecules, 2005, 38, 1691-1698.	4.8	39
116	One-pot controlled synthesis of biodegradable and biocompatible co-polymer micelles. Journal of Materials Chemistry, 2009, 19, 4529.	6.7	39
117	Biodegradable Coreâ~'Shell Materials via RAFT and ROP: Characterization and Comparison of Hyperbranched and Microgel Particles. Macromolecules, 2011, 44, 1347-1354.	4.8	39
118	"Solvent-Free―Photochemical Activation of CH4, C2H4, and C2H6 by (C5Me5)Ir(CO)2 in Supercritical Fluid Solution. Organometallics, 1996, 15, 1804-1812.	2.3	38
119	Plasticization and spraying of poly (DLâ€ŀactic acid) using supercritical carbon dioxide: control of particle size. Journal of Pharmaceutical Sciences, 2004, 93, 1083-1090.	3.3	38
120	A facile synthetic route to aqueous dispersions of silver nanoparticles. Materials Letters, 2007, 61, 4906-4910.	2.6	38
121	Organometallic photochemistry in supercritical fluids: the reaction of H2with [(η5-C5H5)M(CO)3](M  Re) Tj E Chemical Society Chemical Communications, 1989, , 1099-1101.	TQq1 1 0. 2.0	784314 rg8 37
122	Charge Transfer Complex Inimer: A Facile Route to Dendritic Materials. Advanced Materials, 2003, 15, 1348-1352.	21.0	37
123	Uniform cell colonization of porous 3-D scaffolds achieved using radial control of surface chemistry. Acta Biomaterialia, 2011, 7, 3336-3344.	8.3	37
124	Infrared Spectral Features Due to Very Rapid Fluxional Motion: Changes in the Infrared Carbonyl Stretching Spectra of Tricarbonyl(.eta.4-norbornadiene)iron with Temperature. The Journal of Physical Chemistry, 1995, 99, 17532-17538.	2.9	36
125	Novel one pot synthesis of silver nanoparticle–polymer composites by supercritical CO2 polymerisation in the presence of a RAFT agent. Chemical Communications, 2007, , 3933.	4.1	36
126	Synthetic Polymers for Simultaneous Bacterial Sequestration and Quorum Sense Interference. Angewandte Chemie - International Edition, 2011, 50, 9852-9856.	13.8	36

#	Article	IF	CITATIONS
127	In vitro study of hydroxyapatite-based photocurable polymer composites prepared by laser stereolithography and supercritical fluid extraction. Acta Biomaterialia, 2008, 4, 1603-1610.	8.3	35
128	Image-based characterization of foamed polymeric tissue scaffolds. Biomedical Materials (Bristol), 2008, 3, 015011.	3.3	35
129	New vinyl ester copolymers as stabilisers for dispersion polymerisation in scCO2. Polymer, 2011, 52, 5403-5409.	3.8	35
130	Porous Copolymers of Îμ-Caprolactone as Scaffolds for Tissue Engineering. Macromolecules, 2013, 46, 8136-8143.	4.8	35
131	Amphiphilic block copolymers from a renewable ε-decalactone monomer: prediction and characterization of micellar core effects on drug encapsulation and release. Journal of Materials Chemistry B, 2016, 4, 7119-7129.	5.8	35
132	Copolymerization of Vinylidene Fluoride and Hexafluoropropylene in Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 9135-9142.	4.8	34
133	A novel synthetic route to metal–polymer nanocomposites by in situ suspension and bulk polymerizations. European Polymer Journal, 2008, 44, 1331-1336.	5.4	34
134	Surface Characterisation of Bioadhesive PLGA/Chitosan Microparticles Produced by Supercritical Fluid Technology. Pharmaceutical Research, 2011, 28, 1668-1682.	3.5	34
135	Preparation of hybrid polymer nanocomposite microparticles by a nanoparticle stabilised dispersion polymerisation. Journal of Materials Chemistry, 2008, 18, 998.	6.7	33
136	Epoxy functionalised poly(ε-caprolactone): synthesis and application. Chemical Communications, 2008, , 5806.	4.1	33
137	Polyacrylates Derived from Biobased Ethyl Lactate Solvent via SET-LRP. Biomacromolecules, 2019, 20, 2135-2147.	5.4	33
138	Spectroscopic analysis and in situ monitoring of impregnation and extraction of polymer films and powders using supercritical fluids. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 541-549.	2.1	32
139	The homo and copolymerisation of 2-(dimethylamino)ethyl methacrylate in supercritical carbon dioxide. Polymer, 2003, 44, 3803-3809.	3.8	32
140	New Thiolateâ^`Cobalt(II) Complexes for Catalytic Chain Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2004, 37, 6667-6669.	4.8	32
141	Polymerization of Vinylidene Fluoride in Supercritical Carbon Dioxide:Â Effects of Poly(dimethylsiloxane) Macromonomer on Molecular Weight and Morphology of Poly(vinylidene) Tj ETQq1 1	0.784 && 4 rg	BT \$2 verlock
142	Fabrication of polymer scaffolds for tissue engineering using surface selective laser sintering. Laser Physics, 2006, 16, 774-787.	1.2	32
143	Supercritical CO2: an effective medium for the chemo-enzymatic synthesis of block copolymers?. Chemical Communications, 2007, , 3805.	4.1	32
144	Preparative-scale organometallic chemistry in supercritical fluids; isolation of [Cr(CO)5(C2H4)] as a stable solid at room temperature. Journal of the Chemical Society Chemical Communications, 1993, , 1814.	2.0	31

#	Article	IF	CITATIONS
145	Reversibly collapsible macroporous poly(styrene-divinylbenzene) resins. Polymer, 2000, 41, 7273-7277.	3.8	31
146	FTIR analysis of water in supercritical carbon dioxide microemulsions using monofunctional perfluoropolyether surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 143-150.	4.7	31
147	Supercritical carbon dioxide foaming of elastomer/heterocyclic methacrylate blends as scaffolds for tissue engineering. Journal of Materials Chemistry, 2005, 15, 4881.	6.7	31
148	Supercritical CO ₂ : A Clean and Low Temperature Approach to Blending P _{DL} LA and PEG. Advanced Functional Materials, 2012, 22, 1684-1691.	14.9	31
149	Supercritical CO2 fluid-foaming of polymers to increase porosity: A method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?. Acta Biomaterialia, 2012, 8, 1918-1927.	8.3	31
150	Development of a slow non-viral DNA release system from PDLLA scaffolds fabricated using a supercritical CO2 technique. Biotechnology and Bioengineering, 2007, 98, 679-693.	3.3	30
151	Effects of poly(vinyl pivalate)-based stabiliser architecture on CO2-solubility and stabilising ability in dispersion polymerisation of N-vinyl pyrrolidone. Polymer Chemistry, 2013, 4, 3791.	3.9	30
152	Supercritical fluid assisted melting of poly(ethylene glycol): a new solvent-free route to microparticles. Journal of Materials Chemistry, 2005, 15, 1148.	6.7	29
153	Copper bromide complexed by fluorinated macroligands: towards microspheres by ATRP of vinyl monomers in scCO2. Chemical Communications, 2008, , 314-316.	4.1	29
154	Controlled aqueous polymerization of acrylamides and acrylates and "in situ―depolymerization in the presence of dissolved CO ₂ . Chemical Communications, 2016, 52, 6533-6536.	4.1	29
155	Controlled polymerisation of lactide using an organo-catalyst in supercritical carbon dioxide. Green Chemistry, 2011, 13, 2032.	9.0	28
156	Dispersion Polymerization of Vinylidene Fluoride in Supercritical Carbon Dioxide Using a Fluorinated Graft Maleic Anhydride Copolymer Stabilizer. Macromolecules, 2005, 38, 1542-1545.	4.8	27
157	Simultaneous Dynamic Kinetic Resolution in Combination with Enzymatic Ring-Opening Polymerization. Macromolecules, 2006, 39, 7302-7305.	4.8	27
158	HRP-mediated inverse emulsion polymerisation of acrylamide in supercritical carbon dioxide. Green Chemistry, 2008, 10, 863.	9.0	27
159	Viscosity studies of poly(<scp>DL</scp> â€lactic acid) in supercritical CO ₂ . Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1383-1393.	2.1	27
160	Can High-Pressure Raman Spectroscopy Be Simplified? A Microscale Optical-Fiber Capillary Cell for the Study of Supercritical Fluids. Applied Spectroscopy, 1994, 48, 214-218.	2.2	26
161	Monitoring dispersion polymerisations of methyl methacrylate in supercritical carbon dioxide. European Polymer Journal, 2003, 39, 423-428.	5.4	26
162	The preparation of novel nano-structured polymer blends of ultra high molecular weight polyethylene with polymethacrylates using supercritical carbon dioxide. Journal of Materials Chemistry, 2003, 13, 2838-2844.	6.7	26

#	Article	IF	CITATIONS
163	Direct synthesis of poly(l-lactic acid) in supercritical carbon dioxide with dicyclohexyldimethylcarbodiimide and 4-dimethylaminopyridine. Polymer, 2004, 45, 7839-7843.	3.8	26
164	Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide Using a Pseudo-Graft Stabilizer:Â Role of Reactor Mixing. Macromolecules, 2004, 37, 2996-3004.	4.8	26
165	Coating carbon nanotubes with polymer in supercritical carbon dioxide. Chemical Communications, 2006, , 1670.	4.1	26
166	Spectroscopic probes for hydrogen bonding, extraction impregnation and reaction in supercritical fluids. Analyst, The, 1993, 118, 1111.	3.5	25
167	Novel Nanostructured Polymeric Composites of Polycaprolactone and Ultra-High Molecular Weight Polyethylene via a Supercritical-Fluid Route. Advanced Materials, 2005, 17, 364-367.	21.0	25
168	Precipitation polymerisation of vinylidene fluoride in supercritical CO2 and real-time calorimetric monitoring. Polymer, 2005, 46, 1467-1472.	3.8	25
169	Deposition in supercritical fluids: from silver to semiconductors. Journal of Materials Chemistry, 2009, 19, 8560.	6.7	25
170	How does dense phase CO ₂ influence the phase behaviour of block copolymers synthesised by dispersion polymerisation?. Polymer Chemistry, 2016, 7, 905-916.	3.9	25
171	2â€Methyltetrahydrofuran (<scp>2â€MeTHF</scp>) as a versatile green solvent for the synthesis of amphiphilic copolymers via <scp>ROP</scp> , <scp>FRP</scp> , and <scp>RAFT</scp> tandem polymerizations. Journal of Polymer Science, 2020, 58, 1571-1581.	3.8	25
172	Photochemical Generation of Polymer-Bound CpMn(CO)2(.eta.2-C:C) Complexes in Polyethylene Film: A Diagnostic Probe for Investigating the Unsaturation of the Polymer. Journal of the American Chemical Society, 1994, 116, 8621-8628.	13.7	24
173	The wall effect: how metal/radical interactions can affect polymerisations in supercritical carbon dioxide. Polymer, 2000, 41, 1251-1256.	3.8	24
174	A supercritical CO2 injection system for the production of polymer/mammalian cell composites. Journal of Supercritical Fluids, 2008, 43, 535-541.	3.2	24
175	Improved Particle Size Control for the Dispersion Polymerization of Methyl methacrylate in Supercritical Carbon Dioxide. Macromolecular Chemistry and Physics, 2016, 217, 2294-2301.	2.2	24
176	Atomic force microscopic study of the surface morphology of apatite films deposited by pulsed laser ablation. Biomaterials, 1997, 18, 1043-1049.	11.4	23
177	The copolymerisation of methyl and ethyl methacrylate in supercritical carbon dioxide. Macromolecular Rapid Communications, 2000, 21, 1019-1023.	3.9	23
178	New unsaturated surfactants for the dispersion polymerisation of methyl methacrylate in supercritical carbon dioxide. European Polymer Journal, 2001, 37, 1347-1351.	5.4	23
179	Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Applied Physics Letters, 2008, 92, .	3.3	23
180	Supercritical fluids: Clean solvents for green chemistry. Chinese Journal of Chemistry, 1999, 17, 212-222.	4.9	23

#	Article	IF	CITATIONS
181	Single shot tetanus vaccine manufactured by a supercritical fluid encapsulation technology. International Journal of Pharmaceutics, 2011, 413, 147-154.	5.2	23
182	Controlled oligomerisation of isoprene-towards the synthesis of squalene analogues. Polymer Chemistry, 2012, 3, 1495.	3.9	23
183	Controlled polymerisation and purification of branched poly(lactic acid) surfactants in supercritical carbon dioxide. Green Chemistry, 2016, 18, 4772-4786.	9.0	23
184	Supercritical fluids in organometallic chemistry: IR evidence for the photochemical C–H activation of high density polyethylene by [(η5-C5Me5)Ir(CO)2]. Journal of the Chemical Society Chemical Communications, 1990, , 1762-1764.	2.0	22
185	Silver(i)–thioether coordination polymers constructed using asymmetric diketonate anions. CrystEngComm, 2002, 4, 88-92.	2.6	22
186	Dispersion Polymerizations of Methyl Methacrylate in Supercritical Carbon Dioxide with a Novel Ester End-Capped Perfluoropolyether Stabilizer. Macromolecules, 2003, 36, 5424-5427.	4.8	22
187	RAFT polymerisation of renewable terpene (meth)acrylates and the convergent synthesis of methacrylate–acrylate–methacrylate triblock copolymers. Polymer Chemistry, 2021, 12, 3177-3189.	3.9	22
188	Photochemical activation of C–H bonds in supercritical fluids: the dramatic effect of dihydrogen on the activation of ethane by [(η5-C5Me5)Ir(CO)2]. Journal of the Chemical Society Chemical Communications, 1990, , 1287-1290.	2.0	21
189	Organometallic photochemistry in supercritical fluids: Reactions of cyclopentadienyl carbonyl and phosphine carbonyl complexes of manganese with dinitrogen. Journal of Organometallic Chemistry, 1994, 484, 129-135.	1.8	21
190	Synthesis of poly(glycolide) in supercritical carbon dioxide in the presence of a hydrocarbon stabiliserElectronic Supplementary Information (ESI) available: Full experimental section and scheme of PGA synthesis. See http://www.rsc.org/suppdata/cc/b3/b313358c/. Chemical Communications, 2004, , 808.	4.1	21
191	High molecular weight graft stabilisers for dispersion polymerisation of vinylidene fluoride in supercritical carbon dioxide: the effect of architecture. Polymer, 2005, 46, 10626-10636.	3.8	21
192	Sustainable synthesis and precise characterisation of bio-based star polycaprolactone synthesised with a metal catalyst and with lipase. Polymer Chemistry, 2018, 9, 5594-5607.	3.9	21
193	Biocompatible Unimolecular Micelles Obtained via the Passerini Reaction as Versatile Nanocarriers for Potential Medical Applications. Biomacromolecules, 2019, 20, 90-101.	5.4	21
194	Stress relaxation and cartilage shaping under laser radiation. , 1996, 2681, 358.		20
195	Novel fluorinated stabilizers for ring-opening polymerization in supercritical carbon dioxide. Journal of Polymer Science Part A, 2005, 43, 6573-6585.	2.3	20
196	Continuous Flow Supercritical Chemical Fluid Deposition of Optoelectronic Quality CdS. Advanced Materials, 2009, 21, 4115-4119.	21.0	20
197	A route to diffusion embedding of CdSe/CdS quantum dots in fluoropolymer microparticles. Green Chemistry, 2011, 13, 2696.	9.0	20
198	Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: Preparation of microparticles using PEG, fatty acids and physical or chemicals blends of PEG and fatty acids. International Journal of Pharmaceutics, 2013, 441, 580-588.	5.2	20

#	Article	IF	CITATIONS
199	Antimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide. Journal of Colloid and Interface Science, 2018, 532, 112-117.	9.4	20
200	Monitoring morphology evolution within block copolymer microparticles during dispersion polymerisation in supercritical carbon dioxide: a high pressure SAXS study. Polymer Chemistry, 2019, 10, 860-871.	3.9	20
201	The synthesis and spectroscopic identification of [(η5-C5H5)Re(N2)3] and [(η5-C5H5)Re(CO)(N2)2] in supercritical xenon at room temperature and in N2matrices at 20 K. Journal of the Chemical Society Chemical Communications, 1989, , 1517-1519.	2.0	19
202	The polymerisation of functionalised methacrylate monomers in supercritical carbon dioxide. European Polymer Journal, 2003, 39, 1785-1790.	5.4	19
203	Novel Osteoinductive Biomimetic Scaffolds Stimulate Human Osteoprogenitor ActivityImplications for Skeletal Repair. Connective Tissue Research, 2003, 44, 312-317.	2.3	19
204	Towards sustainable polymeric nano-carriers and surfactants: facile low temperature enzymatic synthesis of bio-based amphiphilic copolymers in scCO ₂ . Polymer Chemistry, 2016, 7, 2130-2142.	3.9	19
205	Dissolving biomolecules and modifying biomedical implants with supercritical carbon dioxide. Pure and Applied Chemistry, 2000, 72, 1347-1355.	1.9	19
206	Schwingungsspektroskopie in überkritischen fluiden Phasen: von der Analytik bis zur Synthesechemie. Angewandte Chemie, 1995, 107, 1409-1432.	2.0	18
207	Photochemical Reactions of Organometallic Complexes Impregnated into Polymers:  Speciation, Isomerization, and Hydrogenation of Residual Alkene Moieties in Polyethylene. Journal of the American Chemical Society, 2000, 122, 2523-2531.	13.7	18
208	The preparation of novel blends of Ultra High Molecular Weight Polyethylene with polymethacrylate based copolymers using supercritical carbon dioxide. Journal of Materials Chemistry, 2005, 15, 5037.	6.7	18
209	Facile one-spot synthesis of highly branched polycaprolactone. Polymer Chemistry, 2014, 5, 2997-3008.	3.9	18
210	Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects. Polymer, 2021, 228, 123912.	3.8	18
211	Acoustic and photoacoustic measurements in supercritical fluids; a new approach to determining the critical point of mixtures. Journal of Supercritical Fluids, 1994, 7, 69-73.	3.2	17
212	Grafting polymers by enzymatic ring opening polymerisation—maximising the grafting efficiency. Journal of Materials Chemistry, 2008, 18, 989.	6.7	17
213	Interconnectivity analysis of supercritical CO2-foamed scaffolds. Computer Methods and Programs in Biomedicine, 2012, 106, 139-149.	4.7	17
214	A high pressure cell for supercritical CO2 on-line chemical reactions studied with x-ray techniques. Review of Scientific Instruments, 2014, 85, 093905.	1.3	17
215	Novel Osteoinductive Biomimetic Scaffolds Stimulate Human Osteoprogenitor Activity-Implications for Skeletal Repair. Connective Tissue Research, 2003, 44, 312-317.	2.3	17
216	†Non-classical' dihydrogen complexes of vanadium: the spectroscopic characterization of [(η5-C5H5)V(CO)3(H2)] in solution at both cryogenic and room temperatures. Journal of the Chemical Society Chemical Communications, 1990, , 913-915.	2.0	16

#	Article	IF	CITATIONS
217	Supported ATRP of fluorinated methacrylates in supercritical carbon dioxide: preparation of scCO2 soluble polymers with low catalytic residues. Chemical Communications, 2008, , 5803.	4.1	16
218	Rheological studies of polycaprolactone in supercritical CO2. European Polymer Journal, 2013, 49, 464-470.	5.4	16
219	Superhydrophobic polymeric coatings produced by rapid expansion of supercritical solutions combined with electrostatic deposition (RESS-ED). Journal of Supercritical Fluids, 2014, 95, 610-617.	3.2	16
220	Clean Block Copolymer Microparticles from Supercritical CO ₂ : Universal Templates for the Facile and Scalable Fabrication of Hierarchical Mesostructured Metal Oxides. Nano Letters, 2018, 18, 7560-7569.	9.1	16
221	Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments. Journal of Materials Chemistry B, 2019, 7, 5222-5229.	5.8	16
222	"Solvent-free" impregnation of dinuclear metal complexes into polyethylene: use of supercritical carbon dioxide and the in situ photochemical assembly of decacarbonyldimanganese from hydridomanganese pentacarbonyl. Inorganic Chemistry, 1993, 32, 5643-5644.	4.0	15
223	One-step seed dispersion polymerisation in supercritical carbon dioxide. Chemical Communications, 2005, , 3939.	4.1	15
224	Sorption and Swelling of Poly(D,Lâ€lactic acid) and Poly(lacticâ€coâ€glycolic acid) in Supercritical CO ₂ . Macromolecular Symposia, 2007, 259, 197-202.	0.7	14
225	Laser technologies for fabricating individual implants and matrices for tissue engineering. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2007, 74, 636.	0.4	14
226	Ultrasonic monitoring of foamed polymeric tissue scaffold fabrication. Journal of Materials Science: Materials in Medicine, 2008, 19, 3071-3080.	3.6	14
227	Particle size and shape effects in medical syringe needles: experiments and simulations for polymer microparticle injection. Journal of Materials Science: Materials in Medicine, 2011, 22, 1975-1983.	3.6	14
228	Towards superhydrophobic coatings made by non-fluorinated polymers sprayed from a supercritical solution. Journal of Supercritical Fluids, 2013, 77, 134-141.	3.2	14
229	The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: An ovine femoral condyle defect study. Journal of Biomedical Materials Research - Part A, 2015, 103, 1346-1356.	4.0	14
230	Effect of supercritical CO ₂ on the copolymerization behavior of cyclohexene oxide/CO ₂ and copolymer properties with DMC/Salen o(III) catalyst system. Journal of Polymer Science Part A, 2016, 54, 2785-2793.	2.3	14
231	Simple cell for microscale capillary solution and supercritical fluid Raman spectroscopy. Journal of Raman Spectroscopy, 1993, 24, 443-445.	2.5	13
232	Title is missing!. Journal of Chemical Crystallography, 1999, 29, 547-554.	1.1	13
233	Can Supercritical Carbon Dioxide Improve the Mechanical Integrity of Ultrahighâ€Molecularâ€Weight Polyethylene?. Advanced Materials, 2008, 20, 575-578.	21.0	13
234	Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO ₂ . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150073.	3.4	13

#	Article	IF	CITATIONS
235	Sustained-Release Hydromorphone Microparticles Produced by Supercritical Fluid Polymer Encapsulation. Journal of Pharmaceutical Sciences, 2019, 108, 811-814.	3.3	13
236	A â€~greener' one-pot synthesis of monoterpene-functionalised lactide oligomers. European Polymer Journal, 2020, 125, 109516.	5.4	13
237	Polymerisation of vinylidene fluoride in supercritical carbon dioxide: Formation of PVDF macroporous beads. European Polymer Journal, 2005, 41, 2544-2551.	5.4	12
238	Dispersion Catalytic Chain Transfer Polymerizations of Methyl Methacrylate in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2005, 44, 8654-8658.	3.7	12
239	Catalytic Chain Transfer Mediated Autopolymerization of Divinylbenzene: Toward Facile Synthesis of High Alkene Functional Group Density Hyperbranched Materials. Macromolecules, 2012, 45, 9258-9266.	4.8	12
240	Enzymatic one-pot synthesis of renewable and biodegradable surfactants in supercritical carbon dioxide (scCO ₂). Green Chemistry, 2020, 22, 1308-1318.	9.0	12
241	Functionalisable Epoxy-rich Electrospun Fibres Based on Renewable Terpene for Multi-Purpose Applications. Polymers, 2021, 13, 1804.	4.5	12
242	Comment on: The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?. Journal of Antimicrobial Chemotherapy, 2007, 60, 447-447.	3.0	11
243	Synthesis of polymeric microcapsules by interfacial-suspension cationic photopolymerisation of divinyl ether monomer in aqueous suspension. Polymer Chemistry, 2017, 8, 972-975.	3.9	11
244	Synthesis of novel carvone (meth)acrylate monomers for the production of hydrophilic polymers with high terpene content. Polymer International, 2021, 70, 499-505.	3.1	11
245	Terpene polyacrylate TPA5 shows favorable molecular hydrodynamic properties as a potential bioinspired archaeological wood consolidant. Scientific Reports, 2021, 11, 7343.	3.3	11
246	Biocompatibility of Laser-deposited Hydroxyapatite Coatings on Titanium and Polymer Implant Materials. Journal of Biomedical Optics, 1998, 3, 423.	2.6	10
247	Properties of calcium phosphate coatings deposited and modified with lasers. Journal of Materials Science: Materials in Medicine, 2003, 14, 151-155.	3.6	10
248	Stability of Human Growth Hormone in Supercritical Carbon Dioxide. Journal of Pharmaceutical Sciences, 2012, 101, 56-67.	3.3	10
249	Direct â€~in situ', low VOC, high yielding, CO2expanded phase catalytic chain transfer polymerisation: towards scale-up. Dalton Transactions, 2013, 42, 127-136.	3.3	10
250	The effect of CO2 on the viscosity of polystyrene/limonene solutions. Journal of Supercritical Fluids, 2014, 88, 26-37.	3.2	10
251	Porous hollow TiO ₂ microparticles for photocatalysis: exploiting novel ABC triblock terpolymer templates synthesised in supercritical CO ₂ . Polymer Chemistry, 2021, 12, 2904-2913.	3.9	10
252	Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: Thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids. International Journal of Pharmaceutics, 2012, 438, 225-231.	5.2	9

#	Article	IF	CITATIONS
253	An analysis of polymer type and chain length for use as a biological composite graft extender in impaction bone grafting: A mechanical and biocompatibility study. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3211-3219.	4.0	9
254	Starch/Poly(glycerol-adipate) Nanocomposites: A Novel Oral Drug Delivery Device. Coatings, 2020, 10, 125.	2.6	9
255	Determination of the stability of laser deposited apatite coatings in phosphate buffered saline solution using Fourier transform infrared (FTIR) spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1996, 52, 123-127.	3.9	8
256	Incorporation of proteins within alginate fibre-based scaffolds using a post-fabrication entrapment methodâ€. Journal of Pharmacy and Pharmacology, 2010, 58, 895-902.	2.4	8
257	Formulation of Bioerodible Ketamine Microparticles as an Analgesic Adjuvant Treatment Produced by Supercritical Fluid Polymer Encapsulation. Pharmaceutics, 2018, 10, 264.	4.5	8
258	Clean synthesis of linear and star amphiphilic poly(ε-caprolactone)- <i>block</i> -poly(ethyl ethylene) Tj ETQq0 0 0 22, 3248-3261.	rgBT /Ove 9.0	erlock 10 Tf 8
259	Synthesis of Passeriniâ€3CR Polymers and Assembly into Cytocompatible Polymersomes. Macromolecular Rapid Communications, 2021, 42, e2000321.	3.9	8
260	Spectroscopy and Chemistry in Supercritical Fluids. , 1994, , 527-537.		8
261	Microstructural characterisation of silver/polymer nanocomposites prepared using supercritical carbon dioxide. Journal of Physics: Conference Series, 2006, 26, 276-279.	0.4	7
262	GECO-DOSY Post-Processing Analysis of Polymers. Macromolecules, 2007, 40, 976-982.	4.8	7
263	One dose or two? The use of polymers in drug delivery. Polymer International, 2007, 56, 1457-1460.	3.1	7
264	Thermal-responsive and photocrosslinkable hyperbranched polymers synthesised by deactivation enhanced ATRP and RAFT polymerisations. Journal of Controlled Release, 2008, 132, e48-e50.	9.9	7
265	Mild synthesis of poly(HEMA)-networks as well-defined nanoparticles in supercritical carbon dioxide. Journal of Materials Chemistry B, 2017, 5, 5806-5815.	5.8	7
266	Versatile Routes to Functional RAFT Chain Transfer Agents through the Passerini Multicomponent Reaction. ACS Macro Letters, 2017, 6, 781-785.	4.8	7
267	Can a combination of poly(ethylene glycol) and dense phase carbon dioxide improve processing of polylactide? A high pressure rheology investigation. Journal of Supercritical Fluids, 2018, 133, 343-348.	3.2	7
268	A facile route to bespoke macro- and mesoporous block copolymer microparticles. Polymer Chemistry, 2018, 9, 3808-3819.	3.9	7
269	Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxide. Green Chemistry, 2020, 22, 2197-2202.	9.0	7
270	PEGylated Biodegradable Polyesters for PGSS Microparticles Formulation: Processability, Physical and Release Properties. Current Drug Delivery, 2016, 13, 673-681.	1.6	7

#	Article	IF	CITATIONS
271	Spectroscopic Investigations of Organometallic Photochemistry in Supercritical Fluids. ACS Symposium Series, 1992, , 121-131.	0.5	6
272	Clean chemistry in supercritical fluids. Process Technol, 1996, , 67-72.	0.1	6
273	Timeâ€lapsed imaging for inâ€process evaluation of supercritical fluid processing of tissue engineering scaffolds. Biotechnology Progress, 2009, 25, 1176-1183.	2.6	6
274	Synthesis of water-soluble surfactants using catalysed condensation polymerisation in green reaction media. Polymer Chemistry, 2021, 12, 2992-3003.	3.9	6
275	Passerini chemistries for synthesis of polymer pro-drug and polymersome drug delivery nanoparticles. Journal of Materials Chemistry B, 2022, 10, 3895-3905.	5.8	6
276	Influence of Target Density on Properties of Laser Deposited Calcium Phosphate Coatings. Key Engineering Materials, 2001, 192-195, 107-110.	0.4	5
277	Microscopic spacial effect on the dispersion polymerization in scCO2. European Polymer Journal, 2007, 43, 663-667.	5.4	5
278	Sulindac encapsulation and release from functional poly(HEMA) microparticles prepared in supercritical carbon dioxide. International Journal of Pharmaceutics, 2018, 549, 161-168.	5.2	5
279	Novel green route towards polyesters-based resin by photopolymerization of star polymers. EXPRESS Polymer Letters, 2019, 13, 1104-1115.	2.1	5
280	Comparison of polymeric particles synthesised using scCO2 as the reaction medium on the millilitre and litre scale. Journal of Supercritical Fluids, 2020, 160, 104785.	3.2	5
281	Green enzymatic synthesis and processing of poly (cis-9,10-epoxy-18-hydroxyoctadecanoic acid) in supercritical carbon dioxide (scCO2). European Polymer Journal, 2021, 161, 110827.	5.4	5
282	Exploiting the tuneable density of scCO2 to improve particle size control for dispersion polymerisations in the presence of poly(dimethyl siloxane) stabilisers. European Polymer Journal, 2022, 168, 111108.	5.4	5
283	Sustainable terpene triblock copolymers with tuneable properties for pressure sensitive adhesive applications. Polymer Testing, 2022, 109, 107530.	4.8	5
284	Supercritical Chemical Fluid Deposition of High Quality Compound Semiconductors. ECS Transactions, 2009, 25, 1193-1197.	0.5	4
285	Synthesis, characterization and evaluation of in vitro toxicity in hepatocytes of linear polyesters with varied aromatic and aliphatic co-monomers. Journal of Controlled Release, 2016, 244, 214-228.	9.9	4
286	Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate) particles in supercritical carbon dioxide. Polymer Chemistry, 2019, 10, 5760-5770.	3.9	4
287	On-line polymerisation monitoring in scCO2: a reliable and inexpensive sampling method in high pressure applications. Journal of Supercritical Fluids, 2021, 167, 105047.	3.2	4
288	Influence of structure and solubility of chain transfer agents on the RAFT control of dispersion polymerisation in scCO ₂ . Chemical Science, 2021, 12, 1016-1030.	7.4	4

#	Article	IF	CITATIONS
289	Antimicrobial â€`inks' for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO ₂ . Polymer Chemistry, 0, , .	3.9	4
290	In situ formation of crosslinked core–corona polymeric nanoparticles from a novel hyperbranched core. Polymer Chemistry, 2012, 3, 2807.	3.9	3
291	Effects of Setting Bone Cement on Tissue-Engineered Bone Graft. Journal of Bone and Joint Surgery - Series A, 2013, 95, 736-743.	3.0	3
292	In situ crosslinking of nanostructured block copolymer microparticles in supercritical carbon dioxide. Polymer Chemistry, 2019, 10, 3960-3972.	3.9	3
293	Biodegradable Scaffolds for Tissue Engineering Fabricated by Surface Selective Laser Sintering. IFMBE Proceedings, 2007, , 676-679.	0.3	3
294	Excimer laser deposition of apatite at room temperature on titanium substrates. European Physical Journal Special Topics, 1994, 04, C4-183-C4-186.	0.2	3
295	Novel osteoinductive biomimetic scaffolds stimulate human osteoprogenitor activityimplications for skeletal repair. Connective Tissue Research, 2003, 44 Suppl 1, 312-7.	2.3	3
296	P12.14 Evaluation of the Antimicrobial Activity of Silver-Impregnated Ventricular Catheters. Journal of Hospital Infection, 2006, 64, S63-S64.	2.9	2
297	Surface Enhanced Raman Scattering using Metal Modified Microstructured Optical Fibre Substrates. , 2006, , .		2
298	Surface enhanced Raman scattering using metal modified microstructured optical fiber substrates. , 2006, , .		2
299	Chemoenzymatic Synthesis of Block Copolymers. ACS Symposium Series, 2008, , 216-229.	0.5	2
300	Time and spectrally resolved enhanced fluorescence using silver nanoparticle impregnated polycarbonate substrates. Applied Physics Letters, 2008, 93, .	3.3	2
301	One-pot synthesis of micron-sized polybetaine particles; innovative use of supercritical carbon dioxide. Polymer Chemistry, 2017, 8, 4557-4564.	3.9	2
302	Synthesis and control of crosslinked poly(acrylic acid) based viscosity modifiers using dense phase carbon dioxide as a solvent. Journal of Supercritical Fluids, 2018, 139, 38-44.	3.2	2
303	Synthesis of two-phase polymer particles in supercritical carbon dioxide. Polymer Chemistry, 2020, 11, 5029-5039.	3.9	2
304	Loss measurements of microstructured optical fibres with metal-nanoparticle inclusions. Electronics Letters, 2008, 44, 795.	1.0	1
305	Silver nanoparticle impregnated polycarbonate substrates for plasmonic applications. , 2009, , .		1
306	Highly coloured and electrophoretically active polymer microparticles <i>via</i> staggered dispersion polymerisation in supercritical carbon dioxide and dodecane. Journal of Materials Chemistry C, 2019, 7, 12194-12203.	5.5	1

#	Article	IF	CITATIONS
307	Synthesis of model terpene-derived copolymers in supercritical carbon dioxide for cosmetic applications. European Polymer Journal, 2021, 157, 110621.	5.4	1
308	Greener <scp>extractionâ€chemical modificationâ€polymerization</scp> pipeline of vernolic acid from Ethiopian ironweed plant. Journal of Polymer Science, 0, , .	3.8	1
309	Recent Developments in the Use of Supercritical CO2 in Synthetic Organic Chemistry. ChemInform, 2003, 34, no.	0.0	0
310	Surface-Enhanced Raman Spectroscopy using silver impregnated polycarbonate substrates. , 2007, , .		0
311	Highly efficient SERS inside microstructured optical fibres via optical mode engineering. , 2007, , .		0
312	<title>Laser rapid prototyping for tissue engineering and regeneration</title> ., 2007, , .		0
313	Osteogenesis on Surface Selective Laser Sintered Bioresorbable Scaffolds. IFMBE Proceedings, 2008, , 12-15.	0.3	0
314	Remedi: A Research Consortium Applying Engineering Strategies to Establish Regenerative Medicine as a New Industry. IFMBE Proceedings, 2009, , 2209-2212.	0.3	0