Sungryul Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4315624/publications.pdf

Version: 2024-02-01

74 3,250 31 57
papers citations h-index g-index

75 75 75 3771 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A NIR-Light-Driven Twisted and Coiled Polymer Actuator with a PEDOT-Tos/Nylon-6 Composite for Durable and Remotely Controllable Artificial Muscle. Polymers, 2022, 14, 432.	4.5	6
2	A Light-Driven Vibrotactile Actuator with a Polymer Bimorph Film for Localized Haptic Rendering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6597-6605.	8.0	18
3	A highly stretchable optical strain sensor monitoring dynamically large strain for deformation-controllable soft actuator. Smart Materials and Structures, 2021, 30, 105020.	3.5	8
4	Highly contrastive, real-time modulation of light intensity by reversible stress-whitening of spontaneously formed nanocomposites: application to wearable strain sensors. Journal of Materials Chemistry C, 2021, 9, 8496-8505.	5.5	2
5	A Soft and Transparent Visuo-Haptic Interface Pursuing Wearable Devices. IEEE Transactions on Industrial Electronics, 2020, 67, 717-724.	7.9	40
6	Dielectric Elastomers UV-Cured from Poly(dimethylsiloxane) Solution in Vinyl Acetate. Polymers, 2020, 12, 2660.	4.5	3
7	Monolithic focus-tunable lens technology enabled by disk-type dielectric-elastomer actuators. Scientific Reports, 2020, 10, 16937.	3.3	16
8	Facile Functionalization of Poly(Dimethylsiloxane) Elastomer by Varying Content of Hydridosilyl Groups in a Crosslinker. Polymers, 2019, 11, 1842.	4.5	6
9	Extended AirPiano: Visuohaptic Virtual Piano with Multiple Ultrasonic Array Modules. Lecture Notes in Electrical Engineering, 2019, , 313-316.	0.4	O
10	Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices. IEEE Transactions on Haptics, 2018, 11, 15-21.	2.7	92
11	High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer. Applied Physics Letters, 2018, 112, .	3.3	32
12	An Enhanced Soft Vibrotactile Actuator Based on ePVC Gel with Silicon Dioxide Nanoparticles. IEEE Transactions on Haptics, 2018, 11, 22-29.	2.7	27
13	Pitch-tuned coiled polymer actuator for large contractile strain under light-loading. , $2018, , .$		O
14	Silver-Nanowires Coated Pitch-Tuned Coiled Polymer Actuator for Large Contractile Strain under Light-Loading. International Journal of Precision Engineering and Manufacturing, 2018, 19, 1895-1900.	2.2	4
15	A Robust Soft Lens for Tunable Camera Application Using Dielectric Elastomer Actuators. Soft Robotics, 2018, 5, 777-782.	8.0	36
16	Elastomer thin-film pressure sensor based on embedded photonic tunnel-junction arrays. Optics Letters, 2018, 43, 3953.	3.3	5
17	A variation in wrinkle structures of UV-cured films with chemical structures of prepolymers. Materials Letters, 2017, 199, 105-109.	2.6	9
18	Perspective and potential of smart optical materials. Smart Materials and Structures, 2017, 26, 093001.	3.5	26

#	Article	IF	CITATIONS
19	Electrically tunable binary phase Fresnel lens based on a dielectric elastomer actuator. Optics Express, 2017, 25, 23801.	3.4	34
20	An electro-active polymer based lens module for dynamically varying focal system. Applied Physics Letters, 2016, 109, 141908.	3.3	14
21	Structure modulated electrostatic deformable mirror for focus and geometry control. Optics Express, 2016, 24, 55.	3.4	10
22	Wrinkle structures formed by formulating UV-crosslinkable liquid prepolymers. Polymer, 2016, 99, 447-452.	3.8	12
23	Highâ€Performance Flexible Multilayer MoS ₂ Transistors on Solutionâ€Based Polyimide Substrates. Advanced Functional Materials, 2016, 26, 2426-2434.	14.9	75
24	Pressure Sensor using Vertical Coupling of Optical Waveguides. , 2016, , .		0
25	A thin film active-lens with translational control for dynamically programmable optical zoom. Applied Physics Letters, 2015, 107, .	3.3	27
26	Haptic interface design for future interactive devices. , 2015, , .		0
27	A transparent visuo-haptic input device with optical waveguide based thin film display, sensor and surface actuator. Sensors and Actuators A: Physical, 2015, 233, 47-53.	4.1	6
28	Highly Flexible and Transparent Skin-like Tactile Sensor. Lecture Notes in Electrical Engineering, 2015, , 187-189.	0.4	7
29	Polymerâ€Based Sensors: Polymerâ€Waveguideâ€Based Flexible Tactile Sensor Array for Dynamic Response (Adv. Mater. 26/2014). Advanced Materials, 2014, 26, 4473-4473.	21.0	1
30	Thin film display based on polymer waveguides. Optics Express, 2014, 22, 23433.	3.4	5
31	Film-type haptic actuator made with cellulose acetate layers. Journal of Intelligent Material Systems and Structures, 2014, 25, 1289-1294.	2.5	13
32	Polymerâ€Waveguideâ€Based Flexible Tactile Sensor Array for Dynamic Response. Advanced Materials, 2014, 26, 4474-4480.	21.0	130
33	Polymer-Based Flexible Visuo-Haptic Display. IEEE/ASME Transactions on Mechatronics, 2014, 19, 1463-1469.	5.8	31
34	Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes. RSC Advances, 2013, 3, 2272.	3.6	61
35	Flexible visuo-haptic display. , 2013, , .		0
36	A flexible paper transistor made with aligned single-walled carbon nanotube bonded cellulose composite. Current Applied Physics, 2013, 13, 897-901.	2.4	33

#	Article	IF	CITATIONS
37	Transparent and flexible force sensor array based on optical waveguide. Optics Express, 2012, 20, 14486.	3.4	22
38	Sintering condition effect on the characteristics of ink-jet printed silver pattern on flexible cellulose paper. Current Applied Physics, 2012, 12, e10-e13.	2.4	7
39	Bistable Largeâ€Strain Actuation of Interpenetrating Polymer Networks. Advanced Materials, 2012, 24, 6513-6519.	21.0	66
40	Intrinsically stretchable transparent electrodes based on silver-nanowire–crosslinked-polyacrylate composites. Nanotechnology, 2012, 23, 344002.	2.6	162
41	Compliant Silver Nanowireâ€Polymer Composite Electrodes for Bistable Large Strain Actuation. Advanced Materials, 2012, 24, 1321-1327.	21.0	199
42	Paper transistor made with regenerated cellulose and covalently bonded single-walled carbon nanotubes. , $2011, \ldots$		0
43	Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites. Carbon, 2011, 49, 518-527.	10.3	49
44	Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sensors and Actuators A: Physical, 2011, 165, 194-199.	4.1	186
45	Multi-walled carbon nanotubes covalently bonded cellulose composite for chemical vapor sensor. , 2010, , .		0
46	Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sensors and Actuators B: Chemical, 2010, 150, 308-313.	7.8	98
47	Evaluation of cellulose electro-active paper made by tape casting and zone stretching methods. International Journal of Precision Engineering and Manufacturing, 2010, 11, 987-990.	2.2	33
48	Effect of covalent bonds on the mechanical properties of a multiâ€walled carbon nanotube/cellulose composite. Polymer International, 2010, 59, 1071-1076.	3.1	7
49	Paper Actuators Made with Cellulose and Hybrid Materials. Sensors, 2010, 10, 1473-1485.	3.8	65
50	Dry Electroactive Paper Actuator Based on Cellulose/Poly(Ethylene Oxide)â€"Poly(Ethylene Glycol) MicroComposite. Journal of Intelligent Material Systems and Structures, 2009, 20, 1141-1146.	2.5	18
51	Electrically aligned cellulose film for electro-active paper and its piezoelectricity. Smart Materials and Structures, 2009, 18, 117001.	3. 5	30
52	Fabrication of Piezoelectric Cellulose Paper and Audio Application. Journal of Bionic Engineering, 2009, 6, 18-21.	5.0	31
53	Covalently bonded multi-walled carbon nanotubes-cellulose electro-active paper actuator. Sensors and Actuators A: Physical, 2009, 154, 73-78.	4.1	32
54	Paper transistor made with covalently bonded multiwalled carbon nanotube and cellulose. Applied Physics Letters, 2009, 95, .	3.3	91

#	Article	IF	Citations
55	Covalently bonded functionalized multi-walled carbon nanotubes and cellulose for electroactive paper actuator., 2009,,.		O
56	Effect of Li ⁺ ions on structure, properties, and actuation of cellulose electroâ€active paper actuator. Journal of Applied Polymer Science, 2008, 108, 2260-2265.	2.6	12
57	Effect of solvent mixture on properties and performance of electro-active paper made with regenerated cellulose. Sensors and Actuators B: Chemical, 2008, 129, 652-658.	7.8	54
58	Characteristics and performance of functionalized MWNT blended cellulose electro-active paper actuator. Synthetic Metals, 2008, 158, 521-526.	3.9	32
59	Cellulose Smart Material: Possibility and Challenges. Journal of Intelligent Material Systems and Structures, 2008, 19, 417-422.	2.5	46
60	The Cause of Nanohole and Nanoparticle Formation on Au-Electrode after Actuation of Electro-Active Paper Actuator. Journal of Physical Chemistry C, 2008, 112, 16204-16208.	3.1	4
61	Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity. Journal of Applied Physics, 2008, 103, 083301.	2.5	33
62	Cellulose Electroactive Paper (EAPap): The Potential for a Novel Electronic Material. Materials Research Society Symposia Proceedings, 2008, 1129, 1.	0.1	3
63	A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose. Smart Materials and Structures, 2007, 16, 1471-1476.	3.5	70
64	Sonication time effect on MWNT/PANI-EB composite for hybrid electro-active paper actuator. Synthetic Metals, 2007, 157, 523-528.	3.9	24
65	Performance of Electro-active paper actuators with thickness variation. Sensors and Actuators A: Physical, 2007, 133, 225-230.	4.1	48
66	Synthesis, characterization and actuation behavior of polyaniline-coated electroactive paper actuators. Polymer International, 2007, 56, 1530-1536.	3.1	25
67	Discovery of Cellulose as a Smart Material. Macromolecules, 2006, 39, 4202-4206.	4.8	639
68	A Comparative Study of Conductive Polypyrrole and Polyaniline Coatings on Electro-Active Papers. Polymer Journal, 2006, 38, 659-668.	2.7	60
69	Electro-active-paper actuator made with LiCl/cellulose films: Effect of LiCl content. Macromolecular Research, 2006, 14, 624-629.	2.4	24
70	Multiwalled-carbon nanotubes and polyaniline coating on electro-active paper for bending actuator. Journal Physics D: Applied Physics, 2006, 39, 2580-2586.	2.8	37
71	Cellulose based electro-active papers: performance and environmental effects. Smart Materials and Structures, 2006, 15, 719-723.	3.5	108
72	Single-walled carbon nanotube/polyaniline coated cellulose based electro-active paper (EAPap) as hybrid actuator. Smart Materials and Structures, 2006, 15, N61-N65.	3.5	38

Sungryul Yun

#	Article	IF	CITATIONS
73	Studies on conducting polymer electroactive paper actuators: effect of humidity and electrode thickness. Smart Materials and Structures, 2005, 14, 876-880.	3.5	60
74	New electro-active paper actuator using conducting polypyrrole: actuation behaviour in LiClO4 acetonitrile solution. Synthetic Metals, 2005, 149, 53-58.	3.9	48