Ellis M Gartner

List of Publications by Citations

Source: https://exaly.com/author-pdf/4315604/ellis-m-gartner-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36
papers

4,428
citations

h-index

37
g-index

5,437
ext. papers

8
avg, IF

6.34
L-index

#	Paper	IF	Citations
36	Industrially interesting approaches to Ibw-CO2Izements. Cement and Concrete Research, 2004, 34, 1489)-1 49 8	1091
35	Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. <i>Cement and Concrete Research</i> , 2018 , 114, 2-26	10.3	647
34	Sustainable development and climate change initiatives. <i>Cement and Concrete Research</i> , 2008 , 38, 115-	12 75.3	601
33	A review of alternative approaches to the reduction of CO 2 emissions associated with the manufacture of the binder phase in concrete. <i>Cement and Concrete Research</i> , 2015 , 78, 126-142	10.3	264
32	Cement and carbon emissions. <i>Materials and Structures/Materiaux Et Constructions</i> , 2014 , 47, 1055-106	5 3.4	239
31	A physico-chemical basis for novel cementitious binders. Cement and Concrete Research, 2011, 41, 736-	749 .3	214
30	Alternative cement clinkers. Cement and Concrete Research, 2018, 114, 27-39	10.3	158
29	Early age hydration of calcium sulfoaluminate (synthetic ye'elimite, C4A3SI) in the presence of gypsum and varying amounts of calcium hydroxide. <i>Cement and Concrete Research</i> , 2013 , 48, 105-115	10.3	117
28	A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration. <i>Cement and Concrete Research</i> , 2005 , 35, 19-25	10.3	114
27	Influence of Tertiary Alkanolamines on Portland Cement Hydration. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 1521-1530	3.8	114
26	A new model for the C-S-H phase formed during the hydration of Portland cements. <i>Cement and Concrete Research</i> , 2017 , 97, 95-106	10.3	104
25	Thermodynamics of Calcium Silicate Hydrates and Their Solutions. <i>Journal of the American Ceramic Society</i> , 1987 , 70, 743-749	3.8	90
24	A 1H NMR relaxometry investigation of gel-pore drying shrinkage in cement pastes. <i>Cement and Concrete Research</i> , 2016 , 86, 12-19	10.3	80
23	Proposed mechanism of C-S-H growth tested by soft X-ray microscopy. <i>Cement and Concrete Research</i> , 2000 , 30, 817-822	10.3	67
22	NOx de-pollution by hardened concrete and the influence of activated charcoal additions. <i>Cement and Concrete Research</i> , 2012 , 42, 1348-1355	10.3	53
21	A proposed mechanism for the growth of C?S?H during the hydration of tricalcium silicate. <i>Cement and Concrete Research</i> , 1997 , 27, 665-672	10.3	53
20	Interactions between Polymeric Dispersants and Calcium Silicate Hydrates. <i>Journal of the American Ceramic Society</i> , 2004 , 83, 2556-2560	3.8	53

(2004-1985)

19	Saturation Factors for Calcium Hydroxide and Calcium Sulfates in Fresh Portland Cement Pastes. Journal of the American Ceramic Society, 1985 , 68, 667-673	3.8	53
18	Cohesion and expansion in polycrystalline solids formed by hydration reactions IThe case of gypsum plasters. <i>Cement and Concrete Research</i> , 2009 , 39, 289-295	10.3	43
17	Air void morphology in fresh cement pastes. Cement and Concrete Research, 2002, 32, 1025-1031	10.3	32
16	Final report of RILEM TC 205-DSC: durability of self-compacting concrete. <i>Materials and Structures/Materiaux Et Constructions</i> , 2008 , 41, 225-233	3.4	31
15	Novel cement systems (sustainability). Session 2 of the Fred Glasser Cement Science Symposium. <i>Advances in Cement Research</i> , 2010 , 22, 195-202	1.8	25
14	In situ imaging of ground granulated blast furnace slag hydration. <i>Journal of Materials Science</i> , 2006 , 41, 7074-7081	4.3	22
13	Direct observation of cement hydration by soft X-ray transmission microscopy. <i>Journal of Materials Science Letters</i> , 2003 , 22, 1335-1337		22
12	Effect of polymer modification of the pastellggregate interface on the mechanical properties of concretes. <i>Cement and Concrete Research</i> , 2011 , 41, 459-466	10.3	21
11	A modified ASTM C1012 procedure for qualifying blended cements containing limestone and SCMs for use in sulfate-rich environments. <i>Cement and Concrete Research</i> , 2014 , 63, 75-88	10.3	19
10	Role of alcohol-ethylene oxide polymers on the reduction of shrinkage of cement paste. <i>Cement and Concrete Research</i> , 2018 , 111, 157-168	10.3	17
9	Further studies of the hydration of MgO-hydromagnesite blends. <i>Cement and Concrete Research</i> , 2019 , 126, 105912	10.3	16
8	The effects of seeding C3S pastes with afwillite. <i>Cement and Concrete Research</i> , 2016 , 89, 145-157	10.3	15
7	Discussion of the paper D issolution theory applied to the induction period in alite hydration P. Juilland et al., Cem. Concr. Res. 40 (2010) 831 B 44. <i>Cement and Concrete Research</i> , 2011 , 41, 560-562	10.3	13
6	Amorphous determination in calcium sulfoaluminate materials by external and internal methods. <i>Advances in Cement Research</i> , 2015 , 27, 417-423	1.8	11
5	Energy costs of house construction. <i>Energy Policy</i> , 1976 , 4, 144-157	7.2	10
4	Discussion of the paper A new view on the kinetics of tricalcium silicate hydration, by L. Nicoleau and A. Nonat, Cem. Concr. Res. 86 (2016) 1 11. Cement and Concrete Research, 2018, 104, 114-117	10.3	7
3	New Control Strategies for Raw Mix Preparation. <i>IEEE Transactions on Industry Applications</i> , 1986 , IA-22, 324-329	4.3	5
2	Calcium Silicate Hydrates Studied by Small-Angle Neutron Scattering (SANS). <i>Journal of the American Ceramic Society</i> , 2004 , 85, 1303-1305	3.8	4

Formation of soluble anhydrite by salicylic acid extraction of calcium silicosulfate. *Cement and Concrete Research*, **1984**, 14, 839-842

10.3 3