
Adrian Kee Keong Teo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/431536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development (Cambridge), 2009, 136, 1339-1349.	2.5	379
2	Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes and Development, 2011, 25, 238-250.	5.9	303
3	The molecular functions of hepatocyte nuclear factors $\hat{a} \in$ "In and beyond the liver. Journal of Hepatology, 2018, 68, 1033-1048.	3.7	175
4	Activin/Nodal Signaling Controls Divergent Transcriptional Networks in Human Embryonic Stem Cells and in Endoderm Progenitors. Stem Cells, 2011, 29, 1176-1185.	3.2	150
5	SIP1 Mediates Cell-Fate Decisions between Neuroectoderm and Mesendoderm in Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 59-70.	11.1	115
6	Derivation of Human Induced Pluripotent Stem Cells from Patients with Maturity Onset Diabetes of the Young*. Journal of Biological Chemistry, 2013, 288, 5353-5356.	3.4	102
7	Activin and BMP4 Synergistically Promote Formation of Definitive Endoderm in Human Embryonic Stem Cells. Stem Cells, 2012, 30, 631-642.	3.2	97
8	Emerging use of stem cells in regenerative medicine. Biochemical Journal, 2010, 428, 11-23.	3.7	92
9	Soluble Factors Secreted by T Cells Promote \hat{I}^2 -Cell Proliferation. Diabetes, 2014, 63, 188-202.	0.6	65
10	Proinflammatory Cytokines Induce Endocrine Differentiation in Pancreatic Ductal Cells via STAT3-Dependent NGN3 Activation. Cell Reports, 2016, 15, 460-470.	6.4	61
11	Early Developmental Perturbations in a Human Stem Cell Model of MODY5/HNF1B Pancreatic Hypoplasia. Stem Cell Reports, 2016, 6, 357-367.	4.8	57
12	Comparable Generation of Activin-Induced Definitive Endoderm via Additive Wnt or BMP Signaling in Absence of Serum. Stem Cell Reports, 2014, 3, 5-14.	4.8	47
13	New Opportunities: Harnessing Induced Pluripotency for Discovery in Diabetes and Metabolism. Cell Metabolism, 2013, 18, 775-791.	16.2	44
14	PDX1 Binds and Represses Hepatic Genes to Ensure Robust Pancreatic Commitment in Differentiating Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 578-590.	4.8	44
15	Human duct cells contribute to \hat{I}^2 cell compensation in insulin resistance. JCI Insight, 2019, 4, .	5.0	43
16	Metformin from mother to unborn child – Are there unwarranted effects?. EBioMedicine, 2018, 35, 394-404.	6.1	40
17	Increased β-cell proliferation before immune cell invasion prevents progression of type 1 diabetes. Nature Metabolism, 2019, 1, 509-518.	11.9	38
18	An arduous journey from human pluripotent stem cells to functional pancreatic β cells. Diabetes, Obesity and Metabolism, 2018, 20, 3-13.	4.4	37

Adrian Kee Keong Teo

#	Article	IF	CITATIONS
19	HNF4A Haploinsufficiency in MODY1 Abrogates Liver and Pancreas Differentiation from Patient-Derived Induced Pluripotent Stem Cells. IScience, 2019, 16, 192-205.	4.1	37
20	Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant 1 ² cells. Nature Communications, 2021, 12, 3133.	12.8	36
21	Single-cell analyses of human islet cells reveal de-differentiation signatures. Cell Death Discovery, 2018, 4, 14.	4.7	35
22	Multimodal Imaging Probe Development for Pancreatic \hat{I}^2 Cells: From Fluorescence to PET. Journal of the American Chemical Society, 2020, 142, 3430-3439.	13.7	34
23	Imeglimin Ameliorates β-Cell Apoptosis by Modulating the Endoplasmic Reticulum Homeostasis Pathway. Diabetes, 2022, 71, 424-439.	0.6	26
24	Tools for Bioimaging Pancreatic \hat{I}^2 Cells in Diabetes. Trends in Molecular Medicine, 2019, 25, 708-722.	6.7	25
25	BCL-xL/BCL2L1 is a critical anti-apoptotic protein that promotes the survival of differentiating pancreatic cells from human pluripotent stem cells. Cell Death and Disease, 2020, 11, 378.	6.3	25
26	Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools. Molecular Metabolism, 2015, 4, 593-604.	6.5	24
27	Gestational Diabetes Alters Functions in Offspring's Umbilical Cord Cells With Implications for Cardiovascular Health. Endocrinology, 2017, 158, 2102-2112.	2.8	24
28	The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis. Molecular Metabolism, 2020, 40, 101015.	6.5	22
29	Tissue engineering and 3D printing of bioartificial pancreas for regenerative medicine in diabetes. Trends in Endocrinology and Metabolism, 2021, 32, 609-622.	7.1	18
30	Dominant-negative NFKBIA mutation promotes IL-1Î ² production causing hepatic disease with severe immunodeficiency. Journal of Clinical Investigation, 2020, 130, 5817-5832.	8.2	17
31	New insights into human beta cell biology using human pluripotent stem cells. Seminars in Cell and Developmental Biology, 2020, 103, 31-40.	5.0	15
32	Paired box 6 programs essential exocytotic genes in the regulation of glucose-stimulated insulin secretion and glucose homeostasis. Science Translational Medicine, 2021, 13, .	12.4	13
33	Cellular stress drives pancreatic plasticity. Science Translational Medicine, 2015, 7, 273ps2.	12.4	11
34	Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts. Stem Cells Translational Medicine, 2015, 4, 1101-1108.	3.3	11
35	Human Islet Isolation and Distribution Efforts for Clinical and Basic Research. OBM Transplantation, 2019, 3, 1-1.	0.2	11
36	Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands. Frontiers in Endocrinology, 2015, 6, 194.	3.5	10

Adrian Kee Keong Teo

#	Article	IF	CITATIONS
37	Replicates in stem cell models-How complicated!. Stem Cells, 2020, 38, 1055-1059.	3.2	10
38	Dynamic proteome profiling of human pluripotent stem cell-derived pancreatic progenitors. Stem Cells, 2020, 38, 542-555.	3.2	6
39	A new perspective of probe development for imaging pancreatic beta cell in vivo. Seminars in Cell and Developmental Biology, 2020, 103, 3-13.	5.0	6
40	Metformin Perturbs Pancreatic Differentiation From Human Embryonic Stem Cells. Diabetes, 2021, 70, 1689-1702.	0.6	6
41	Manufacturing clinicalâ€grade human induced pluripotent stem cellâ€derived beta cells for diabetes treatment. Cell Proliferation, 2022, 55, e13232.	5.3	5
42	Heterogeneity and cell fate flux in single human pancreatic islet cells. Cell Death and Disease, 2018, 9, 222.	6.3	4
43	Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor. EMBO Journal, 2012, 31, 3956-3957.	7.8	3
44	Charting the next century of insulin replacement with cell and gene therapies. Med, 2021, 2, 1138-1162.	4.4	3
45	Chromatin Immunoprecipitation in Human Pluripotent Stem Cell-Derived 3D Organoids to Analyze DNA–Protein Interactions. Methods in Molecular Biology, 2022, 2429, 215-232.	0.9	3
46	Multidisciplinary Effort to Drive Precision-Medicine for the Future. Frontiers in Digital Health, 2022, 4, 845405.	2.8	3
47	Role of Celastrol in Chemosensitization of Cancer. , 2018, , 141-150.		2
48	Defective insulin receptor signaling in hPSCs skews pluripotency and negatively perturbs neural differentiation. Journal of Biological Chemistry, 2021, 296, 100495.	3.4	2
49	Progressive endoplasmic reticulum stress over time due to human insulin gene mutation contributes to pancreatic beta cell dysfunction. Diabetologia, 2021, 64, 2534-2549.	6.3	2
50	Insights from single cell studies of human pancreatic islets and stem cell-derived islet cells to guide functional beta cell maturation in vitro. Vitamins and Hormones, 2021, 116, 193-233.	1.7	2
51	Quality criteria for in vitro human pluripotent stem cell-derived models of tissue-based cells. Reproductive Toxicology, 2022, 112, 36-50.	2.9	2
52	1784-P: Studying the Impact of Heterozygous Human INS Gene Mutation on Pancreatic ß Cell. Diabetes, 2019, 68, 1784-P.	0.6	1
53	Cover Image, Volume 20, Issue 1. Diabetes, Obesity and Metabolism, 2018, 20, i-i.	4.4	0
54	Considerations in using human pluripotent stem cell–derived pancreatic beta cells to treat type 1		0

diabetes. , 2021, , 173-203.

4

#	Article	IF	CITATIONS
55	Protocol for the generation of pancreatic and hepatic progenitors from human pluripotent stem cells for gene regulatory assays. STAR Protocols, 2021, 2, 100471.	1.2	Ο
56	326-LB: BCL-xL/BCL2L1 Is a Critical Anti-Apoptotic Protein that Suppresses BAK to Promote Pancreatic Specification from Human Pluripotent Stem Cells. Diabetes, 2019, 68, .	0.6	0
57	Generating pancreatic beta-like cells from human pluripotent stem cells. Methods in Cell Biology, 2022, , .	1.1	0