Noriko Fujii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4315358/publications.pdf

Version: 2024-02-01

		257450	223800
59	2,216	24	46
papers	citations	h-index	g-index
60	60	60	1273
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The presence of free D-serine in rat brain. FEBS Letters, 1992, 296, 33-36.	2.8	400
2	Simultaneous Stereoinversion and Isomerization at Specific Aspartic Acid Residues in $\hat{l}\pm A$ -Crystallin from Human Lens. Journal of Biochemistry, 1994, 116, 663-669.	1.7	187
3	D-amino acids in living higher organisms. Origins of Life and Evolution of Biospheres, 2002, 32, 103-127.	1.9	167
4	D-Amino Acid in Elderly Tissues. Biological and Pharmaceutical Bulletin, 2005, 28, 1585-1589.	1.4	98
5	The presence of $d-\hat{l}^2$ -aspartic acid-containing peptides in elastic fibers of sun-damaged skin: a potent marker for ultraviolet-induced skin aging. Biochemical and Biophysical Research Communications, 2002, 294, 1047-1051.	2.1	96
6	A Rapid, Comprehensive Liquid Chromatography-Mass Spectrometry (LC-MS)-based Survey of the Asp Isomers in Crystallins from Human Cataract Lenses. Journal of Biological Chemistry, 2012, 287, 39992-40002.	3.4	76
7	d-Amino acids in aged proteins: Analysis and biological relevance. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3141-3147.	2.3	73
8	d-Amino Acid Formation Induced by a Chiral Field within a Human Lens Protein during Aging. Biochemical and Biophysical Research Communications, 1999, 263, 322-326.	2.1	67
9	Formation of Four Isomers at the Asp-151 Residue of Aged Human αA-Crystallin by Natural Aging. Biochemical and Biophysical Research Communications, 1999, 265, 746-751.	2.1	61
10	Simultaneous Stereoinversion and Isomerization at the Asp-4 Residue in \hat{I}^2B2 -Crystallin from the Aged Human Eye Lenses. Biochemistry, 2011, 50, 8628-8635.	2.5	60
11	D-Amino acids in protein: The mirror of life as a molecular index of aging. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 840-847.	2.3	56
12	Localization of D-β-Aspartic Acid–Containing Proteins in Human Eyes. , 2007, 48, 3923.		52
13	Kinetic study of racemization of aspartyl residues in model peptides of αAâ€crystallin. International Journal of Peptide and Protein Research, 1996, 48, 118-122.	0.1	51
14	Isomerization of aspartyl residues in crystallins and its influence upon cataract. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 183-191.	2.4	47
15	The mechanisms of simultaneous stereoinversion, racemization, and isomerization at specific aspartyl residues of aged lens proteins. Mechanisms of Ageing and Development, 1999, 107, 347-358.	4.6	44
16	Kinetics of Isomerization and Inversion of Aspartate 58 of $\hat{l}\pm A$ -Crystallin Peptide Mimics under Physiological Conditions. PLoS ONE, 2013, 8, e58515.	2.5	40
17	Rapid Survey of Four Asp Isomers in Disease-Related Proteins by LC-MS combined with Commercial Enzymes. Analytical Chemistry, 2015, 87, 561-568.	6.5	37
18	Collapse of Homochirality of Amino Acids in Proteins from Various Tissues during Aging. Chemistry and Biodiversity, 2010, 7, 1389-1397.	2.1	36

#	Article	IF	Citations
19	The damaging effect of UV-C irradiation on lens alpha-crystallin. Molecular Vision, 2004, 10, 814-20.	1.1	36
20	Specific Racemization and Isomerization of the Aspartyl Residue of $\hat{l}\pm A$ -Crystallin Due to UV-B Irradiation. Experimental Eye Research, 1997, 65, 99-104.	2.6	34
21	Influence of lβ-, dα- and dβ-Asp isomers of the Asp-76 residue on the properties of αA-crystallin 70–88 peptide. Amino Acids, 2010, 39, 1393-1399.	2.7	32
22	Isomeric Replacement of a Single Aspartic Acid Induces a Marked Change in Protein Function: The Example of Ribonuclease A. ACS Omega, 2017, 2, 260-267.	3.5	32
23	UV B-irradiation enhances the racemization and isomerizaiton of aspartyl residues and production of NÉ-carboxymethyl lysine (CML) in keratin of skin. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3303-3309.	2.3	28
24	Alpha B- and \hat{l}^2 A3-crystallins containing d-Aspartic acids exist in a monomeric state. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1-9.	2.3	26
25	RACEMIZATION OF ASPARTIC ACIDS AT SPECIFIC SITES IN αA-CRYSTALLIN FROM AGED HUMAN LENS Biomedical Research, 1991, 12, 315-321.	0.9	26
26	The Conformation Formed by the Domain after Alanine-155 Induces Inversion of Aspartic Acid-151 in \hat{l} ±A-Crystallin from Aged Human Lenses. Biochemical and Biophysical Research Communications, 1997, 239, 918-923.	2.1	22
27	Localization of D-Î ² -Aspartyl Residue-Containing Proteins in Various Tissues. International Journal of Molecular Sciences, 2009, 10, 1999-2009.	4.1	22
28	Isomerization of Asp residues plays an important role in αA rystallin dissociation. FEBS Journal, 2016, 283, 850-859.	4.7	21
29	Identification of á´amino acid-containing peptides in human serum. PLoS ONE, 2017, 12, e0189972.	2.5	21
30	Quantitative analysis of isomeric (l- \hat{l} ±-, l- \hat{l} 2-, d- \hat{l} ±-, d- \hat{l} 2-) aspartyl residues in proteins from elderly donors. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 25-33.	2.8	20
31	Accumulation of <scp>D</scp> â€∢i>βâ€Aspartic Acidâ€Containing Proteins in Ageâ€Related Ocular Diseases Chemistry and Biodiversity, 2010, 7, 1364-1370.	2.1	19
32	Immunohistochemical study of chronological and photo-induced aging skins using the antibody raised against D -aspartyl residue-containing peptide. Journal of Cutaneous Pathology, 2004, 31, 51-56.	1.3	15
33	Identification of Isomeric Aspartate residues in \hat{I}^2 B2-crystallin from Aged Human Lens. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 767-774.	2.3	15
34	Differential rate constants of racemization of aspartyl and asparaginyl residues in human alpha A-crystallin mutants. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1192-1199.	2.3	14
35	Simultaneous ultraviolet B-induced photo-oxidation of tryptophan/tyrosine and racemization of neighboring aspartyl residues in peptides. Free Radical Biology and Medicine, 2013, 65, 1037-1046.	2.9	14
36	Ferulic Acid Suppresses Amyloid $\langle i \rangle \hat{l}^2 \langle i \rangle$ Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. BioMed Research International, 2017, 2017, 1-9.	1.9	14

#	Article	IF	CITATIONS
37	Differentiation and Semiquantitative Analysis of an Isoaspartic Acid in Human α-Crystallin by Postsource Decay in a Curved Field Reflectron. Analytical Chemistry, 2010, 82, 6384-6394.	6.5	13
38	Site specific oxidation of amino acid residues in rat lens \hat{i}^3 -crystallin induced by low-dose \hat{i}^3 -irradiation. Biochemical and Biophysical Research Communications, 2015, 466, 622-628.	2.1	13
39	Kinetic study of racemization of aspartyl residues in recombinant human αA-crystallin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 800-806.	2.3	12
40	Pathological Role of D-amino Acid-Containing Proteins and Advanced Glycation End Products in the Development of Age-Related Macular Degeneration. Anti-aging Medicine, 2010, 7, 107-111.	0.7	12
41	Oxidative Stress Induces the Formation of D-Aspartyl Residues in the Elastin Mimic Peptides. Chemistry and Biodiversity, 2010, 7, 1408-1412.	2.1	12
42	Asp isomerization increases aggregation of \hat{l}_{\pm} -crystallin and decreases its chaperone activity in human lens of various ages. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140446.	2.3	10
43	Negative charge at aspartate 151 is important for human lens $\hat{l}\pm A$ -crystallin stability and chaperone function. Experimental Eye Research, 2019, 182, 10-18.	2.6	9
44	A single Asp isomer substitution in an αA-crystallin-derived peptide induces a large change in peptide properties. Experimental Eye Research, 2020, 192, 107930.	2.6	9
45	D-amino acid in irradiated and aged mouse Journal of Radiation Research, 1986, 27, 183-190.	1.6	8
46	Determination of rate constants for \hat{l}^2 -linkage isomerization of three specific aspartyl residues in recombinant human $\hat{l}\pm A$ -crystallin protein by reversed-phase HPLC. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3240-3246.	2.3	8
47	One-shot LC–MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation. Amino Acids, 2016, 48, 2855-2866.	2.7	8
48	Asp 58 modulates lens αAâ€crystallin oligomer formation and chaperone function. FEBS Journal, 2018, 285, 2263-2277.	4.7	7
49	RACEMIZATION OF ASPARTIC ACID IN αA-CRYSTALLIN OF BOVINE LENS /b>. Biomedical Research, 1991, 12, 61-64.	0.9	7
50	Co-localisation of advanced glycation end products and $d-\hat{l}^2$ -aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy. British Journal of Ophthalmology, 2012, 96, 1127-1131.	3.9	6
51	Simultaneous and Rapid Detection of Multiple Epimers and Isomers of Aspartyl Residues in Lens Proteins Using an LC-MS-MRM Method. ACS Omega, 2020, 5, 27626-27632.	3.5	5
52	Effect of Asp 96 isomerization on the properties of a lens $\hat{l}\pm B$ -crystallin-derived short peptide. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 139-144.	2.8	4
53	Siteâ€specific rapid deamidation and isomerization in human lens αAâ€crystallin in vitro. Protein Science, 2020, 29, 941-951.	7.6	4
54	d-Amino Acid Residues in Proteins Related to Aging and Age-Related Diseases and a New Analysis of the Isomers in Proteins., 2016,, 241-254.		3

Noriko Fujii

#	Article	IF	CITATIONS
55	Age-related isomerization of Asp in human immunoglobulin G kappa chain. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140410.	2.3	3
56	Isomerization of Asp is essential for assembly of amyloid-like fibrils of \hat{l}_{\pm} A-crystallin-derived peptide. PLoS ONE, 2021, 16, e0250277.	2.5	2
57	Characterization of an antibody that recognizes peptides containing D- \hat{l}^2 -aspartyl residues. Molecular Vision, 2012, 18, 996-1003.	1.1	2
58	Analysis of d- \hat{l}^2 -Aspartyl Isomers at Specific Sites in Proteins. Methods in Molecular Biology, 2012, 794, 325-335.	0.9	0
59	The Importance of the Idea of "Parachirality―in Life Science. , 2017, , 119-131.		0