Wang Lai Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4315287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process. Applied Catalysis A: General, 2008, 340, 183-190.	4.3	261
2	A highly effective and stable nano-sized Ni/MgO–Al2O3 catalyst for gas to liquids (GTL) process. International Journal of Hydrogen Energy, 2008, 33, 2036-2043.	7.1	160
3	Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance. Fuel Processing Technology, 2014, 119, 151-157.	7.2	128
4	Low-temperature water–gas shift reaction over supported Cu catalysts. Renewable Energy, 2014, 65, 102-107.	8.9	119
5	Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2. Applied Catalysis A: General, 2006, 302, 151-156.	4.3	118
6	CeO2 Promoted Ni/Al2O3 Catalyst in Combined Steam and Carbon Dioxide Reforming of Methane for Gas to Liquid (GTL) Process. Catalysis Letters, 2009, 130, 217-221.	2.6	87
7	Combined reforming of methane over supported Ni catalysts. Catalysis Letters, 2007, 117, 85-90.	2.6	85
8	Combined H2O and CO2 reforming of CH4 over nano-sized Ni/MgO-Al2O3 catalysts for synthesis gas production for gas to liquid (GTL): Effect of Mg/Al mixed ratio on coke formation. Catalysis Today, 2009, 146, 166-171.	4.4	85
9	Natural gas steam reforming for hydrogen production over metal monolith catalyst with efficient heat-transfer. International Journal of Hydrogen Energy, 2010, 35, 1613-1619.	7.1	85
10	Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas. Applied Energy, 2019, 236, 340-353.	10.1	75
11	Combined H2O and CO2 Reforming of Methane Over Ni–Ce–ZrO2 Catalysts for Gas to Liquids (GTL). Catalysis Letters, 2008, 125, 283-288.	2.6	70
12	Selective oxidation of CO in hydrogen-rich stream over Cu–Ce catalyst promoted with transition metals. International Journal of Hydrogen Energy, 2005, 30, 209-220.	7.1	68
13	Hydrogen production from low temperature WGS reaction on co-precipitated Cu–CeO2 catalysts: An optimization of Cu loading. International Journal of Hydrogen Energy, 2014, 39, 9135-9142.	7.1	68
14	Selective oxidation of carbon monoxide in hydrogen-rich stream over Cu-Ce/γ-Al2O3 catalysts promoted with cobalt in a fuel processor for proton exchange membrane fuel cells. Journal of Power Sources, 2004, 132, 18-28.	7.8	64
15	Single Stage Water–Gas Shift Reaction Over Supported Pt Catalysts. Catalysis Letters, 2011, 141, 95-99.	2.6	62
16	Combined H2O and CO2 reforming of CH4 over Ce-promoted Ni/Al2O3 catalyst for gas to liquid (GTL) process: Enhancement of Ni–CeO2 interaction. Catalysis Today, 2012, 185, 126-130.	4.4	61
17	Methanol-steam reforming reaction over Cu-Al-based catalysts derived from layered double hydroxides. International Journal of Hydrogen Energy, 2017, 42, 2081-2087.	7.1	50
18	Combined reforming of methane over co-precipitated Ni–CeO2, Ni–ZrO2 and Ni–CeO.8ZrO.2O2 catalysts to produce synthesis gas for gas to liquid (GTL) process. Catalysis Today, 2009, 146, 71-75.	4.4	48

Wang Lai Yoon

#	Article	IF	CITATIONS
19	Combined H 2 O and CO 2 reforming of coke oven gas over Ca-promoted Ni/MgAl 2 O 4 catalyst for direct reduced iron production. Fuel, 2015, 153, 303-309.	6.4	44
20	Synthesis of highly active nano-sized (1 wt.% Pt/CeO2) catalyst for water gas shift reaction in medium temperature application. Catalysis Today, 2012, 185, 113-118.	4.4	42
21	Syngas production by combined steam and CO2 reforming of coke oven gas over highly sinter-stable La-promoted Ni/MgAl2O4 catalyst. International Journal of Hydrogen Energy, 2015, 40, 13909-13917.	7.1	40
22	Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate. Applied Catalysis A: General, 2020, 602, 117694.	4.3	40
23	Development of compact fuel processor for 2kW class residential PEMFCs. Journal of Power Sources, 2006, 163, 119-124.	7.8	39
24	Effect of the redox properties of support oxide over cobalt-based catalysts in high temperature water-gas shift reaction. Molecular Catalysis, 2017, 433, 145-152.	2.0	33
25	Highly dispersed Ni particles on Ru/NiAl catalyst derived from layered double hydroxide for selective CO methanation. Catalysis Communications, 2015, 60, 8-13.	3.3	31
26	A highly dispersed Pt/γ-Al2O3 catalyst prepared via deposition–precipitation method for preferential CO oxidation. International Journal of Hydrogen Energy, 2014, 39, 5696-5703.	7.1	21
27	Design of an integrated fuel processor for residential PEMFCs applications. Journal of Power Sources, 2006, 160, 505-509.	7.8	20
28	Synthesis of a Novel Nano-Sized Pt/ZnO Catalyst for Water Gas Shift Reaction in Medium Temperature Application. Catalysis Letters, 2012, 142, 1075-1081.	2.6	20
29	Diesel pre-reforming over highly dispersed nano-sized Ni catalysts supported on MgO–Al2O3 mixed oxides. International Journal of Hydrogen Energy, 2014, 39, 10941-10950.	7.1	19
30	Highly dispersed nickel catalyst promoted by precious metals for CO selective methanation. International Journal of Hydrogen Energy, 2015, 40, 10033-10040.	7.1	18
31	Ni nanosheet-coated monolith catalyst with high performance for hydrogen production via natural gas steam reforming. Applied Catalysis A: General, 2016, 525, 103-109.	4.3	18
32	Genuine design of compact natural gas fuel processor for 1-kWe class residential proton exchange membrane fuel cell systems. Fuel Processing Technology, 2014, 121, 32-37.	7.2	17
33	Steam reforming of methane over highly active and KOH-resistant Ni/Î ³ -Al2O3 catalysts for direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC). Applied Catalysis A: General, 2010, 383, 156-160.	4.3	16
34	Hydrogen production from natural gas steam reforming over Ni catalysts supported on metal substrates. Current Applied Physics, 2010, 10, S37-S39.	2.4	16
35	Highly efficient non-noble metal based nanostructured catalysts for selective CO methanation. Catalysis Communications, 2015, 71, 7-12.	3.3	16
36	H2 Production over Ni/γ-Al2O3 Catalyst Prepared by a Homogeneous Precipitation Method Using Urea for Direct Internal Reforming (DIR) in a Molten Carbonate Fuel Cell (MCFC). Chemistry Letters, 2009, 38, 1162-1163.	1.3	15

Wang Lai Yoon

#	Article	IF	CITATIONS
37	Ru-coated metal monolith catalyst prepared by novel coating method for hydrogen production via natural gas steam reforming. Catalysis Today, 2017, 293-294, 129-135.	4.4	14
38	Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells. Journal of Power Sources, 2018, 378, 597-602.	7.8	13
39	Novel surface pretreatment for metal structured catalyst. Catalysis Today, 2011, 164, 52-57.	4.4	12
40	Analysis of design variables for an efficient natural gas steam reforming process comprised in a small scale hydrogen fueling station. Renewable Energy, 2012, 42, 234-242.	8.9	11
41	The promotional effect of K on the catalytic activity of Ni/MgAl2O4 for the combined H2O and CO2 reforming of coke oven gas for syngas production. Korean Journal of Chemical Engineering, 2016, 33, 3115-3120.	2.7	11
42	H2 production over co-precipitated Ni–MgO–Al2O3 catalysts for direct internal reforming (DIR) in a molten carbonate fuel cell (MCFC). Journal of Industrial and Engineering Chemistry, 2012, 18, 880-881.	5.8	8
43	Deactivation of SiO2 supported Ni catalysts by structural change in the direct internal reforming reaction of molten carbonate fuel cell. Catalysis Communications, 2017, 101, 44-47.	3.3	7
44	Autothermal reforming of methane to syngas using co-precipitated Niâ^'(La2O3) x â^'(ZrO2)1â^'x catalyst. Research on Chemical Intermediates, 2008, 34, 781-786.	2.7	3
45	Kinetic Study on CO-Selective Methanation over Nickel-Based Catalysts for Deep Removal of CO from Hydrogen-Rich Reformate. Catalysts, 2021, 11, 1429.	3.5	2
46	Pre-reforming of n-tetradecane over Ni/MgO–Al2O3 catalyst: effect of added potassium on the coke resistance. Research on Chemical Intermediates, 2016, 42, 4317-4332.	2.7	1
47	Prereforming of n-tetradecane over Ce-promoted 50Âwt% Ni/MgO–Al2O3 catalyst with high coke resistance. Research on Chemical Intermediates, 2016, 42, 237-248.	2.7	1
48	Highly Active Mixed-Phase Cu–Al Catalyst for Methanol Steam Reforming. Journal of Chemical Engineering of Japan, 2017, 50, 548-553.	0.6	0
49	Preferential CO Oxidation Over Ru/Al2O3-Coated Metal Monolith Catalyst for Small-Scale Fuel Processor. , 2015, , 633-646.		Ο