
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4315232/publications.pdf Version: 2024-02-01

TENC-NAN LIN

#	Article	IF	CITATIONS
1	Anti-Inflammatory Effects of Phytochemical Components of Clinacanthus nutans. Molecules, 2022, 27, 3607.	1.7	9
2	Clinacanthus nutans Mitigates Neuronal Death and Reduces Ischemic Brain Injury: Role of NF-κB-driven IL-1β Transcription. NeuroMolecular Medicine, 2021, 23, 199-210.	1.8	2
3	Galectin-7 downregulation in lesional keratinocytes contributes to enhanced IL-17A signaling and skin pathology in psoriasis. Journal of Clinical Investigation, 2021, 131, .	3.9	35
4	Study of the antitumor mechanisms of apiole derivatives (AP-02) from Petroselinum crispum through induction of G0/G1 phase cell cycle arrest in human COLO 205 cancer cells. BMC Complementary and Alternative Medicine, 2019, 19, 188.	3.7	9
5	Histone Deacetylases in Stroke. Chinese Journal of Physiology, 2019, 62, 95-107.	0.4	14
6	The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. Journal of Food and Drug Analysis, 2018, 26, 221-231.	0.9	93
7	Clinacanthus nutans Mitigates Neuronal Apoptosis and Ischemic Brain Damage Through Augmenting the C/EBPβ-Driven PPAR-I³ Transcription. Molecular Neurobiology, 2018, 55, 5425-5438.	1.9	20
8	Expression of DHA-Metabolizing Enzyme Alox15 is Regulated by Selective Histone Acetylation in Neuroblastoma Cells. Neurochemical Research, 2018, 43, 540-555.	1.6	10
9	Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain, Behavior, and Immunity, 2018, 73, 562-570.	2.0	58
10	Direct Conversion of Human Fibroblasts into Neural Progenitors Using Transcription Factors Enriched in Human ESC-Derived Neural Progenitors. Stem Cell Reports, 2017, 8, 54-68.	2.3	34
11	Clinacanthus nutans Protects Cortical Neurons Against Hypoxia-Induced Toxicity by Downregulating HDAC1/6. NeuroMolecular Medicine, 2016, 18, 274-282.	1.8	30
12	Nutraceuticals in Neurodegeneration and Aging. NeuroMolecular Medicine, 2016, 18, 239-240.	1.8	3
13	Clinacanthus nutans Extracts Modulate Epigenetic Link to Cytosolic Phospholipase A2 Expression in SH-SY5Y Cells and Primary Cortical Neurons. NeuroMolecular Medicine, 2016, 18, 441-452.	1.8	11
14	Astrocytic GAP43 Induced by the TLR4/NF-κB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. Journal of Neuroscience, 2016, 36, 2027-2043.	1.7	93
15	PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription. Molecular Neurobiology, 2016, 53, 3626-3645.	1.9	54
16	Temporal assessment of vascular reactivity and functionality using MRI during postischemic proangiogenenic vascular remodeling. Magnetic Resonance Imaging, 2015, 33, 903-910.	1.0	2
17	Novel Link of Anti-apoptotic ATF3 with Pro-apoptotic CTMP in the Ischemic Brain. Molecular Neurobiology, 2015, 51, 543-557.	1.9	22
18	15-Deoxy-â^†12,14-PGJ2, by Activating Peroxisome Proliferator-Activated Receptor-Gamma, Suppresses p22phox Transcription to Protect Brain Endothelial Cells Against Hypoxia-Induced Apoptosis. Molecular Neurobiology, 2014, 50, 221-238.	1.9	13

#	Article	IF	CITATIONS
19	Galectins and Neuroinflammation. Advances in Neurobiology, 2014, 9, 517-542.	1.3	47
20	Isolation and Characterization of a Novel Strain of Mesenchymal Stem Cells from Mouse Umbilical Cord: Potential Application in Cell-Based Therapy. PLoS ONE, 2013, 8, e74478.	1.1	16
21	Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) and Neurodegenerative Disorders. Molecular Neurobiology, 2012, 46, 114-124.	1.9	101
22	Stroke angiogenesis and phytochemicals. Frontiers in Bioscience - Scholar, 2012, S4, 599-610.	0.8	28
23	Anti-apoptotic Actions of PPAR-Î ³ Against Ischemic Stroke. Molecular Neurobiology, 2010, 41, 180-186.	1.9	82
24	Genome-Wide Association Study of Young-Onset Hypertension in the Han Chinese Population of Taiwan. PLoS ONE, 2009, 4, e5459.	1.1	58
25	Ligand-Activated Peroxisome Proliferator–Activated Receptor-γ Protects Against Ischemic Cerebral Infarction and Neuronal Apoptosis by 14-3-3ε Upregulation. Circulation, 2009, 119, 1124-1134.	1.6	114
26	Rosiglitazone and PPARâ€Î³ overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating antiâ€apoptotic Bclâ€2 family proteins. Journal of Cellular Physiology, 2009, 220, 58-71.	2.0	94
27	In vivo cerebromicrovasculatural visualization using 3D ΔR2-based microscopy of magnetic resonance angiography (3DΔR2-mMRA). NeuroImage, 2009, 45, 824-831.	2.1	36
28	Dynamic Changes in Vascular Permeability, Cerebral Blood Volume, Vascular Density, and Size after Transient Focal Cerebral Ischemia in Rats: Evaluation with Contrast-Enhanced Magnetic Resonance Imaging. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1491-1501.	2.4	108
29	Induction of Prostacyclin/PGI2 Synthase Expression After Cerebral Ischemia–Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 491-501.	2.4	41
30	Promoter Region Methylation and Reduced Expression of Thrombospondin-1 after Oxygen—Glucose Deprivation in Murine Cerebral Endothelial Cells. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1519-1526.	2.4	58
31	15d-Prostaglandin J 2 Protects Brain From Ischemia-Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 481-487.	1.1	124
32	Stabilization of Hypoxia-inducible Factor-1α by Prostacyclin under Prolonged Hypoxia via Reducing Reactive Oxygen Species Level in Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 36567-36574.	1.6	53
33	Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. Journal of Neurochemistry, 2004, 90, 637-645.	2.1	91
34	Characterization of the rat A2A adenosine receptor gene: a 4.8-kb promoter-proximal DNA fragment confers selective expression in the central nervous system. European Journal of Neuroscience, 2003, 18, 1786-1796.	1.2	55
35	Differential Regulation of Thrombospondin-1 and Thrombospondin-2 After Focal Cerebral Ischemia/Reperfusion. Stroke, 2003, 34, 177-186.	1.0	155

Restorative Potential of Angiogenesis after Ischemic Stroke. , 2003, , 75-94.

2

#	Article	IF	CITATIONS
37	Dynamic Changes in Cerebral Blood Flow and Angiogenesis After Transient Focal Cerebral Ischemia in Rats. Stroke, 2002, 33, 2985-2991.	1.0	118
38	Effect of dexamethasone on the expression of brain-derived neurotrophic factor and neurotrophin-3 messenger ribonucleic acids after forebrain ischemia in the rat. Critical Care Medicine, 2002, 30, 913-918.	0.4	21
39	Cyclooxygenase-1 and Bicistronic Cyclooxygenase-1/Prostacyclin Synthase Gene Transfer Protect Against Ischemic Cerebral Infarction. Circulation, 2002, 105, 1962-1969.	1.6	76
40	The 5' Untranslated Regions of the Rat A2A Adenosine Receptor Gene Function as Negative Translational Regulators. Journal of Neurochemistry, 2002, 73, 1790-1798.	2.1	23
41	Hyperbaric oxygen treatment decreases post-ischemic neurotrophin-3 mRNA down-regulation in the rat hippocampus. NeuroReport, 2001, 12, 3589-3592.	0.6	19
42	Induction of Tie-1 and Tie-2 Receptor Protein Expression after Cerebral Ischemia—Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 690-701.	2.4	54
43	Ethanol Effects on Nitric Oxide Production in Cerebral Pial Cultures. Alcoholism: Clinical and Experimental Research, 2001, 25, 612-618.	1.4	19
44	Induction of Angiopoietin and Tie Receptor mRNA Expression after Cerebral Ischemia–Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 387-395.	2.4	136
45	Differential regulation of H- and L-ferritin messenger RNA subunits, ferritin protein and iron following focal cerebral ischemia–reperfusion. Neuroscience, 2000, 100, 475-484.	1.1	47
46	Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor α (CNTFRα) expression following focal cerebral ischemia. Molecular Brain Research, 1998, 55, 71-80.	2.5	44
47	Dexamethasone inhibits ischemia-induced transient reduction of neurotrophin-3 mRNA in rat hippocampal neurons. NeuroReport, 1998, 9, 3477-3480.	0.6	13
48	Is transient acidosis detrimental to the nervous system?. Critical Care Medicine, 1998, 26, 1947-1948.	0.4	0
49	Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Molecular Brain Research, 1997, 49, 255-265.	2.5	91
50	Elevated basic fibroblast growth factor levels in stroke-prone spontaneously hypertensive rats. Neuroscience, 1997, 76, 557-570.	1.1	10
51	Prolongation and Enhancement of Postischemic c- <i>fos</i> Expression After Fasting. Stroke, 1997, 28, 412-418.	1.0	20
52	Expression of NGFI-B mRNA in a rat focal cerebral ischemia-reperfusion model. Molecular Brain Research, 1996, 43, 149-156.	2.5	29
53	Inositol Trisphosphate, Polyphosphoinositide Turnover, and High-Energy Metabolites in Focal Cerebral Ischemia and Reperfusion. Stroke, 1995, 26, 1893-1900.	1.0	17
54	Expression of c-fos and c-jun family genes after focal cerebral ischemia. Annals of Neurology, 1993, 33, 457-464.	2.8	241

#	Article	IF	CITATIONS
55	Effects of Acute Ethanol Administration on Polyphosphoinositide Turnover and Levels of Inositol 1,4,5-Trisphosphate in Mouse Cerebrum and Cerebellum. Alcoholism: Clinical and Experimental Research, 1993, 17, 401-405.	1.4	10
56	Fatty acids in the lipids ofDrosophila heads: Effects of visual mutants, carotenoid deprivation and dietary fatty acids. Lipids, 1993, 28, 345-350.	0.7	29
57	Phospholipids inDrosophila heads: Effects of visual mutants and phototransduction manipulations. Lipids, 1993, 28, 23-28.	0.7	15
58	Effects of Focal Cerebral Ischemia on Expression and Activity of Inositol 1,4,5-Trisphosphate 3-Kinase in Rat Cortex. Annals of the New York Academy of Sciences, 1993, 679, 382-387.	1.8	3
59	Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats Stroke, 1993, 24, 117-121.	1.0	649
60	Effects of focal cerebral ischemia on inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities in rat cortex. Biochemical and Biophysical Research Communications, 1992, 184, 871-877.	1.0	11
61	Induction of Krox-20 expression after focal cerebral ischemia. Biochemical and Biophysical Research Communications, 1992, 188, 1104-1110.	1.0	27
62	Lithium Effects on Inositol Phospholipids and Inositol Phosphates: Evaluation of an In Vivo Model for Assessing Polyphosphoinositide Turnover in Brain. Journal of Neurochemistry, 1992, 58, 290-297.	2.1	32
63	Brain polyphosphoinositide metabolism during focal ischemia in rat cortex Stroke, 1991, 22, 495-498.	1.0	28
64	Degradation of poly-phosphoinositides in brain subcellular membranes in response to decapitation insult. Neurochemistry International, 1990, 17, 529-535.	1.9	16
65	Decapitation-induced changes in inositol phosphates in rat brain. Biochemical and Biophysical Research Communications, 1990, 167, 1294-1301.	1.0	15
66	Time course for labeling of brain membrane phosphoinositides and other phospholipids after intracerebral injection of [32P]-ATP. Evaluation by an improved HPTLC procedure. Life Sciences, 1989, 44, 689-696.	2.0	22
67	Synthesis of Fatty Acid Ethyl Esters by Brain Membranes. , 1989, , 107-118.		0
68	Arachidonic acid uptake by phospholipids and triacylglycerols of rat brain subcellular membranes. Lipids, 1988, 23, 942-947.	0.7	19
69	Effects of Ethanol on Arachidonic Acid Incorporation Into Lipids of a Plasma Membrane Fraction Isolated from Brain Cerebral Cortex. Alcoholism: Clinical and Experimental Research, 1988, 12, 795-800.	1.4	15
70	Effect of ochratoxin A on rat liver mitochondrial respiration and oxidative phosphorylation. Toxicology, 1985, 36, 119-130.	2.0	62
71	Inhibition of the mitochondrial Mg2+-ATPase by propranolol. Biochemical Pharmacology, 1985, 34, 911-917.	2.0	19