Joseph Horvat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4315189/publications.pdf

Version: 2024-02-01

232 papers 6,287 citations

34 h-index 79698 73 g-index

235 all docs

235 docs citations

times ranked

235

5107 citing authors

#	Article	IF	CITATIONS
1	Characteristic Spectral Features of <i>Terra Preta</i> (TP) in the 5–15 Terahertz Range. Applied Spectroscopy, 2022, 76, 300-309.	2.2	2
2	Spectroscopic Studies of BA Class Liquid Crystals in the 6–15 THz Range Using the Fourier Transform Infrared (FT-IR) Method. Applied Spectroscopy, 2022, 76, 823-830.	2.2	2
3	A comparison between the characteristics of a biochar-NPK granule and a commercial NPK granule for application in the soil. Science of the Total Environment, 2022, 832, 155021.	8.0	5
4	On the use of a volume constraint to account for thermal expansion effects on the low-frequency vibrations of molecular crystals. Physical Chemistry Chemical Physics, 2022, 24, 10408-10419.	2.8	6
5	Anharmonicity-driven redshift and broadening of sharp terahertz features of α-glycine single crystal from 20ÂK to 300ÂK: Theory and experiment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 244, 118635.	3.9	22
6	Piezoresistive and Electrical Properties of a Catecholic Amino Acid–Polyacrylamide Single-Walled Carbon Nanotube Hydrogel Hybrid Network. ACS Applied Polymer Materials, 2021, 3, 671-678.	4.4	7
7	Terahertz response of <scp>dl</scp> -alanine: experiment and theory. Physical Chemistry Chemical Physics, 2021, 23, 657-665.	2.8	9
8	Magnetization reversal on different time-scales for ErFeO ₃ and NdFeO ₃ single crystals. Physical Chemistry Chemical Physics, 2021, 23, 5415-5421.	2.8	7
9	Advanced characterization of biomineralization at plaque layer and inside rice roots amended with iron- and silica-enhanced biochar. Scientific Reports, 2021, 11, 159.	3.3	7
10	First extensive study of silver-doped lanthanum manganite nanoparticles for inducing selective chemotherapy and radio-toxicity enhancement. Materials Science and Engineering C, 2021, 123, 111970.	7.3	7
11	Temperature dependence of Raman scattering spectroscopy in aerographite and single-walled carbon nanotube aerogel. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
12	The 3, 5, 6, and 7ÂTHz resonances of α-glycine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 253, 119544.	3.9	2
13	High-quality, temperature-dependent terahertz spectroscopy of single crystalline L-alanine: Experiment and density-functional theory. Journal of Chemical Physics, 2021, 154, 244311.	3.0	6
14	Temperature-dependent terahertz spectroscopy of l-phenylalanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119922.	3.9	9
15	Raman Spectroscopy of Sucrose, $D(+)$ Glucose and $D(-)$ Fructose in Terahertz and Infrared Frequencies. , 2021, , .		1
16	Terahertz Response of L-Serine at Low Temperatures. , 2021, , .		0
17	Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Science of the Total Environment, 2020, 713, 136431.	8.0	78
18	Aerographite phonon density of states affects double resonant Raman scattering. Journal of Applied Physics, 2020, 128, .	2.5	4

#	Article	IF	Citations
19	Non-zero spontaneous magnetic moment along crystalline $\langle i \rangle b \langle i \rangle$ -axis for rare earth orthoferrites. Journal of Applied Physics, 2020, 127, .	2.5	9
20	Redshifting of the Fundamental Mode of DL-Alanine with Increasing Temperature. , 2020, , .		0
21	Low-Frequency Terahertz Raman Spectra of Graphite Flakes and Single-Walled Carbon Nanotube Aerogel. , 2020, , .		0
22	Thermal characteristic of dark resistivity of InGaAs photoconductive semiconductor switches. Journal of Materials Science: Materials in Electronics, 2019, 30, 15339-15344.	2.2	1
23	The Fundamental Terahertz Mode of L-Alanine: Strong Narrowing, More Symmetry and Small and Non-Uniform Shift as Temperature is Reduced. , 2019, , .		3
24	Effects of Ca substitution on quasiacoustic sliding modes in Sr14â^'xCaxCu24O41. Physical Review B, 2019, 100, .	3.2	1
25	Magnetic Interaction between Pr ³⁺ and Dy ³⁺ Spins and Their Spin Transition Induced by Magnetic Field in a Dy _{0.5} Pr _{0.5} FeO ₃ Single Crystal. Journal of Physical Chemistry C, 2019, 123, 30584-30593.	3.1	12
26	Superficial and Fundamental Correspondences in the Terahertz/IR ($6\hat{a}$ \in "15 THz) Absorption Spectra of Aspirin and Benzoic Acid. Journal of Physical Chemistry A, 2018, 122, 6886-6893.	2.5	6
27	Nanotechnology and its medical applications: revisiting public policies from a regulatory perspective in Australia. Nanotechnology Reviews, 2017, 6, 255-269.	5.8	8
28	Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 2017, 294, 70-79.	5.1	84
29	Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME Journal, 2017, 11, 1087-1101.	9.8	121
30	Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: Characterization and initial field trials. Science of the Total Environment, 2017, 607-608, 184-194.	8.0	36
31	Experimental and calculated THz spectra of analgesics. , 2017, , .		0
32	Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR). International Journal of Environmental Research and Public Health, 2016, 13, 967.	2.6	4
33	Terahertz spectroscopic characterization for carbon-based materials. , 2016, , .		1
34	Terahertz Spectroscopy of Biochars and Related Aromatic Compounds. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 1158-1165.	2.2	3
35	Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi. Scientific Reports, 2016, 6, 28860.	3.3	33
36	Mineral–Biochar Composites: Molecular Structure and Porosity. Environmental Science & Emp; Technology, 2016, 50, 7706-7714.	10.0	148

#	Article	IF	CITATIONS
37	Controlled delivery of drugs adsorbed onto porous Fe 3 O 4 structures by application of AC/DC magnetic fields. Microporous and Mesoporous Materials, 2016, 226, 243-250.	4.4	27
38	THz spectroscopic characterization of biochar. , 2015, , .		0
39	Magnetic nanoparticles for "smart liposomes― European Biophysics Journal, 2015, 44, 647-654.	2.2	23
40	Terahertz (6–15 THz) Spectroscopy and Numerical Modeling of Intermolecular Vibrations in Benzoic Acid and Its Derivatives. Applied Spectroscopy, 2015, 69, 590-596.	2.2	10
41	Improvements in the Dispersion of Nanosilver in a MgB ₂ Matrix through a Graphene Oxide Net. Journal of Physical Chemistry C, 2015, 119, 10631-10640.	3.1	5
42	Effects of Enriched Biochars Containing Magnetic Iron Nanoparticles on Mycorrhizal Colonisation, Plant Growth, Nutrient Uptake and Soil Quality Improvement. Pedosphere, 2015, 25, 749-760.	4.0	96
43	Mechanism of periodic height variations along self-aligned VLS-grown planar nanostructures. Nanoscale, 2015, 7, 20442-20450.	5.6	6
44	Terahertz Spectroscopy of 2,4-Dinitrotoluene over a Wide Temperature Range (7–245 K). Journal of Physical Chemistry A, 2015, 119, 263-270.	2.5	23
45	Absorption spectra of benzoic acid in the 5–15 THz range. , 2014, , . Complementary terahertz absorption and inelastic neutron study of the dynamic anisotropy		O
46	contribution to zone-center spin waves in a canted antiferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Nd</mml:mi><mml:mi>Fe</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B,	3.2	22
47	2014, 90, . Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy. Medical Physics, 2014, 41, 061707.	3.0	0
48	Interplay between boron precursors and Ni–Co–B nanoparticle doping in the fabrication of MgB2 superconductor with improved electromagnetic properties. Acta Materialia, 2014, 80, 457-467.	7.9	7
49	Novel synthesis of superparamagnetic Ni–Co–B nanoparticles and their effect on superconductor properties of MgB2. Acta Materialia, 2014, 70, 298-306.	7.9	19
50	THz absorption bands in Sr <inf>14</inf> Cu <inf>24</inf> O <inf>41</inf> by synchrotron radiation. , 2014, , .		0
51	Collective librations of water molecules in the crystal lattice of rubidium bromide: experiment and simulation. Physical Chemistry Chemical Physics, 2013, 15, 20252.	2.8	14
52	Manganese-Based Layered Coordination Polymer: Synthesis, Structural Characterization, Magnetic Property, and Electrochemical Performance in Lithium-Ion Batteries. Inorganic Chemistry, 2013, 52, 2817-2822.	4.0	188
53	Enhancing superconducting properties of MgB ₂ pellets by addition of amorphous magnetic Ni–Co–B nanoparticles. Superconductor Science and Technology, 2013, 26, 075013.	3.5	12
54	High temperature anisotropy of NdFeO <inf>3</inf> determined using time-domain THz spectroscopy. , 2013, , .		0

#	Article	IF	Citations
55	Signature of aromatic carbons in the terahertz spectroscopy of bio-chars. , 2013, , .		1
56	Calorimetric AC loss measurement of MgB ₂ superconducting tape in an alternating transport current and direct magnetic field. Superconductor Science and Technology, 2012, 25, 115016.	3.5	6
57	Magnetic and superconducting properties of spin-fluctuation-limited superconducting nanoscale VNx. Journal of Applied Physics, 2012, 111, .	2.5	0
58	Complementary techniques for probing terahertz magnetic excitations in Cu <inf>3</inf> Bi(SeO <inf>3</inf>) <inf>2</inf> 0 <inf>2</inf> Cl., 2012,,.		O
59	The Inï¬,uence of CuFe2O4 Nanoparticles on Superconductivity of MgB2. Physics Procedia, 2012, 36, 1498-1503.	1.2	11
60	Polyhedral Magnetite Nanocrystals with Multiple Facets: Facile Synthesis, Structural Modelling, Magnetic Properties and Application for High Capacity Lithium Storage. Chemistry - A European Journal, 2012, 18, 488-497.	3.3	24
61	Flux dynamics in (Y,ÂNd) ₁ Ba ₂ Cu ₃ O _{7â^î^} superconductors. EPJ Applied Physics, 2011, 53, 10801.	0.7	1
62	Transport critical current of MgB ₂ wires: pulsed current of varying rate compared to direct current method. Superconductor Science and Technology, 2011, 24, 105009.	3.5	5
63	Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB ₂ /Fe wires. Journal of Physics: Conference Series, 2010, 234, 022027.	0.4	7
64	Temperature effect on microstructure and electromagnetic performance of polycarbosilane and sugar-doped MgB ₂ wires. Journal of Physics: Conference Series, 2010, 234, 022033.	0.4	2
65	Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices. Chemistry - A European Journal, 2010, 16, 11020-11027.	3.3	136
66	Detection of biochar components for soil fertility using THz-TDS. , 2010, , .		3
67	Mechanisms of x-ray emission from peeling adhesive tape. Applied Physics Letters, 2010, 97, .	3.3	14
68	Synthesis of Mesoporous \hat{l} ±-Fe ₂ O ₃ Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 18753-18761.	3.1	311
69	Peeling adhesive tape emits electromagnetic radiation at terahertz frequencies. Optics Letters, 2009, 34, 2195.	3.3	22
70	Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods. Journal of Physical Chemistry C, 2009, 113, 4357-4361.	3.1	374
71	Stress/Strain Induced Flux Pinning in Highly Dense \${m MgB}_{2}\$ Bulks. IEEE Transactions on Applied Superconductivity, 2009, 19, 2722-2725.	1.7	6
72	Flutelike Porous Hematite Nanorods and Branched Nanostructures: Synthesis, Characterisation and Application for Gasâ€Sensing. Chemistry - A European Journal, 2008, 14, 5996-6002.	3.3	144

#	Article	IF	CITATIONS
73	Facile Synthesis and Characterization of Iron Oxide Semiconductor Nanowires for Gas Sensing Application. Journal of Physical Chemistry C, 2008, 112, 15220-15225.	3.1	143
74	Transport and magnetic critical current in superconducting MgB ₂ wires. Superconductor Science and Technology, 2008, 21, 065003.	3.5	28
75	Excess Mg addition MgB2/Fe wires with enhanced critical current density. Journal of Applied Physics, 2008, 103, 083911.	2.5	16
76	Improvement of <i>J</i> _c and <i>H</i> _{c2} in MgB ₂ superconductor with citric acid addition. Journal of Physics: Conference Series, 2008, 97, 012215.	0.4	1
77	Significant improvement in the critical current density of <i>in situ </i> MgB < sub > 2 by excess Mg addition. Superconductor Science and Technology, 2007, 20, L43-L47.	3.5	34
78	Effect of processing temperature on high field critical current density and upper critical field of nanocarbon doped MgB2. Applied Physics Letters, 2007, 90, 122502.	3.3	39
79	Effect of Carbon Substitution on the Superconducting Properties of \${m MgB}_{2}\$ Doped With Multi-Walled Carbon Nanotubes and Nano Carbon. IEEE Transactions on Applied Superconductivity, 2007, 17, 2929-2932.	1.7	16
80	Enhancement of critical current density and irreversibility field by nano-carbon substitution in MgB2. Physica C: Superconductivity and Its Applications, 2007, 460-462, 568-569.	1.2	11
81	Vortex dynamics in (Tl,Pb)(Sr,Ba)2Ca2Cu3Oy single crystal. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1241-1242.	1.2	0
82	Improving flux pinning of MgB2by carbon nanotube doping and ultrasonication. Superconductor Science and Technology, 2006, 19, L5-L8.	3.5	71
83	Control of nano carbon substitution for enhancing the critical current density in MgB2. Superconductor Science and Technology, 2006, 19, 596-599.	3.5	122
84	Magnetic field processing to enhance critical current densities of MgB2 superconductors. Applied Physics Letters, 2006, 89, 202504.	3.3	25
85	An alternative method for determination of the lock-in angle in twinned superconductors. Journal of Applied Physics, 2006, 99, 043904.	2.5	0
86	Structure and magnetism in the oxygen-deficient perovskites Ce1â^'xSrxCoO3â^'Î^ (xâ%¥0.90). Materials Research Bulletin, 2005, 40, 1415-1431.	5.2	16
87	The effect of nanoscale Fe doping on the superconducting properties of MgB2. Superconductor Science and Technology, 2005, 18, 710-715.	3.5	61
88	The relevance of the self-field for the  peak effect' in the transportJc(H) of iron-sheathed MgB2wires. Superconductor Science and Technology, 2005, 18, 682-688.	3.5	10
89	Off-axis MgB2films using anin situannealing pulsed laser deposition method. Superconductor Science and Technology, 2005, 18, 395-399.	3.5	15
90	Interaction between superconductor and ferromagnetic domains in iron sheath: Peak effect in MgB2â^•Fe wires. Applied Physics Letters, 2005, 87, 102503.	3.3	5

#	Article	IF	Citations
91	Superconducting and Microstructural Properties of Two Types of <tex>\$rm MgB_2\$</tex> Films Prepared by Pulsed Laser Deposition. IEEE Transactions on Applied Superconductivity, 2005, 15, 3261-3264.	1.7	10
92	High transport critical current density and largeHc2andHirrin nanoscale SiC doped MgB2wires sintered at low temperature. Superconductor Science and Technology, 2005, 18, 658-666.	3.5	97
93	Effect of Carbon Nanotube Size on Superconductivity Properties of <tex>\$rm MgB_2\$</tex> . IEEE Transactions on Applied Superconductivity, 2005, 15, 3284-3287.	1.7	26
94	Effect of heating rates on superconducting properties of pure MgB2, carbon nanotube- and nano-SiC-doped in situ MgB2â • Fe wires. Applied Physics Letters, 2005, 87, 182504.	3.3	31
95	Significant improvement of critical current density in coated MgB2/Cu short tapes through nano-SiC doping and short-timein situreaction. Superconductor Science and Technology, 2004, 17, L21-L24.	3.5	28
96	Si addition inin situannealed MgB2thin films by pulsed laser deposition. Superconductor Science and Technology, 2004, 17, 1247-1252.	3.5	8
97	Effects of precursor powders and sintering processes on the superconducting properties of MgB2. Superconductor Science and Technology, 2004, 17, S528-S532.	3.5	25
98	Superconducting screening on different length scales in high-quality bulk MgB2 superconductor. Journal of Applied Physics, 2004, 96, 4342-4351.	2.5	31
99	Comparative study ofin situandex situMgB2films prepared by pulsed laser deposition. Superconductor Science and Technology, 2004, 17, S482-S485.	3.5	21
100	Strong pinning and high critical current density in carbon nanotube doped MgB2. Superconductor Science and Technology, 2004, 17, S572-S577.	3.5	46
101	Oxygen vacancy ordering and magnetism in the rare earth stabilised perovskite form of "SrCoO3â^Î― Solid State Sciences, 2004, 6, 655-662.	3.2	37
102	Cu and nano-SiC doped MgB2 thick films on Ni substrates processed using a very short-time in situ reaction. Physica C: Superconductivity and Its Applications, 2004, 402, 38-44.	1.2	19
103	Significant enhancement of critical current density and flux pinning in MgB2 with nano-SiC, Si, and C doping. Physica C: Superconductivity and Its Applications, 2004, 408-410, 63-67.	1.2	76
104	Fabrication, microstructure and critical current density of pure and Cu doped MgB2 thick films on Cu, Ni and stainless steel substrates by short-time in-situ reaction. Ceramics International, 2004, 30, 1603-1606.	4.8	11
105	Nano-sized Al2O3 doping effects on the critical current density of MgB2 superconductors. Ceramics International, 2004, 30, 1581-1583.	4.8	14
106	Uranium Doping and Thermal Neutron Irradiation Flux Pinning Effects in MgB <tex>\$_2\$</tex> . IEEE Transactions on Applied Superconductivity, 2004, 14, 33-39.	1.7	3
107	Effect of sample size on magnetic Jc for MgB2 superconductor. Applied Physics Letters, 2004, 84, 3109-3111.	3.3	29
108	Effect of Ti Doping on the Superconductivities of MgB2/Fe Wires. Journal of Low Temperature Physics, 2003, 131, 687-692.	1.4	4

#	Article	IF	CITATIONS
109	Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor. Physica C: Superconductivity and Its Applications, 2003, 390, 185-190.	1.2	121
110	Zinc doping effects on the structure, transport and magnetic properties of La0.7Sr0.3Mn1-xZnxO3 manganite oxide. Science and Technology of Advanced Materials, 2003, 4, 149-152.	6.1	21
111	Magnetic hysteresis and relaxation in Bi2212 single crystals doped with Fe and Pb. IEEE Transactions on Applied Superconductivity, 2003, 13, 3770-3773.	1.7	0
112	A comparison of ag and Ag-alloy sheathed Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 2003, 13, 3004-3007.	1.7	3
113	Superconductivity, critical current density, and flux pinning in MgB2â^'x(SiC)x/2 superconductor after SiC nanoparticle doping. Journal of Applied Physics, 2003, 94, 1850-1856.	2.5	91
114	Transport critical current density in Fe-sheathed nano-SiC doped MgB/sub 2/ wires. IEEE Transactions on Applied Superconductivity, 2003, 13, 3199-3202.	1.7	57
115	Superconducting Properties of MgB ₂ Superconductor Doped with SiC Nanopowder. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 679-684.	0.1	0
116	Effect of Sintering Temperature on Microstructure and Critical Current Density of Nanocrystallined MgB ₂ Thick Films Prepared Using very Fast Formation Method. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 349-354.	0.1	0
117	Effects of fission-fragment damage on vortex dimensionality in silver-sheathedBi2Sr2Ca2Cu3Oxtapes. Physical Review B, 2003, 68, .	3.2	2
118	Intense vortex pinning enhanced by semicrystalline defect traps in self-aligned nanostructured MgB2. Applied Physics Letters, 2003, 83, 314-316.	3.3	23
119	Effect of carbon nanotube doping on critical current density of MgB2 superconductor. Applied Physics Letters, 2003, 83, 4996-4998.	3.3	187
120	Magnetic shielding in MgB/sub 2//Fe superconducting wires. IEEE Transactions on Applied Superconductivity, 2003, 13, 3324-3327.	1.7	11
121	Effect of grain size and doping level of sic on the superconductivity and critical current density in MgB/sub 2/ superconductor. IEEE Transactions on Applied Superconductivity, 2003, 13, 3273-3276.	1.7	21
122	Transport critical current of solenoidal MgB2/Cu coils fabricated using a wind-reactionin situtechnique. Superconductor Science and Technology, 2003, 16, L4-L6.	3.5	35
123	Intrinsic nanostructural domains: Possible origin of weaklinkless superconductivity in the quenched reaction product of Mg and amorphous B. Applied Physics Letters, 2002, 81, 874-876.	3.3	18
124	Improvement of critical current in MgB2/Fe superconducting wires by a ferromagnetic sheath. Applied Physics Letters, 2002, 80, 829-831.	3.3	72
125	Order-disorder transition in Bi2.1Sr1.9CaCu2O8+ \hat{l} single crystals doped with Fe and Pb. Physical Review B, 2002, 65, .	3.2	10
126	Effect of various mechanical deformation processes on critical current density and microstructure in MgB2tapes and wires. Superconductor Science and Technology, 2002, 15, 1490-1493.	3.5	9

#	Article	IF	Citations
127	Effect of fission tracks on flux pinning and the resistive transition in neutron irradiated uranium-doped Ag/Bi2223 tapes. Superconductor Science and Technology, 2002, 15, 1596-1599.	3.5	2
128	The peak effect in Fe-doped Bi-2212 single crystals. Superconductor Science and Technology, 2002, 15, 356-360.	3 . 5	3
129	Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Applied Physics Letters, 2002, 81, 3419-3421.	3.3	770
130	Spin glass behaviour in ferromagnetic La2CoMnO6perovskite manganite. Superconductor Science and Technology, 2002, 15, 427-430.	3. 5	45
131	Study of structure, transport, paramagnetic and ferromagnetic properties of La0.8Sr0.2Mn1a~xZnxO3perovskite manganite. Superconductor Science and Technology, 2002, 15, 346-350.	3.5	17
132	Improvement of critical current density in the Cu/MgB2 and Ag/MgB2 superconducting wires using the fast formation method. Physica C: Superconductivity and Its Applications, 2002, 382, 187-193.	1.2	33
133	The effect of hydrogenation on the superconducting transition temperature of MgB2. Physica C: Superconductivity and Its Applications, 2002, 382, 213-216.	1.2	4
134	Structure and spin glass behaviour in non-metallic Yb2CoMnO6 perovskite manganite. Journal of Magnetism and Magnetic Materials, 2002, 246, 86-92.	2.3	17
135	The crystal structure and magnetic properties of the 1-dimensional dihalide-bridged polymers dichlorobis(thiazole)cobalt(II) and dibromobis(thiazole)-cobalt(II). Journal of Physics and Chemistry of Solids, 2002, 63, 657-663.	4.0	11
136	Effect of uranium doping and thermal neutron irradiation on the flux-pinning of silver-clad Bi-Sr-Ca-Cu-O tapes. IEEE Transactions on Applied Superconductivity, 2001, 11, 3896-3899.	1.7	5
137	Spin glass state in Gd2CoMnO6 perovskite manganite. Solid State Communications, 2001, 118, 27-30.	1.9	34
138	High-transport critical current density above 30 K in pure Fe-clad MgB2 tape. Physica C: Superconductivity and Its Applications, 2001, 361, 84-90.	1.2	176
139	Flux jumping and a bulk-to-granular transition in the magnetization of a compacted and sintered MgB2 superconductor. Physica C: Superconductivity and Its Applications, 2001, 361, 79-83.	1.2	67
140	Effects of Cr doping on the structure, charge ordering, transport and spin ordering state in Nd0.5Sr0.5Mn1â^'xCrxO3. Physica C: Superconductivity and Its Applications, 2001, 364-365, 343-346.	1.2	6
141	Fast formation and superconductivity of MgB2 thick films grown on stainless steel substrate. Physica C: Superconductivity and Its Applications, 2001, 361, 73-78.	1.2	31
142	Very fast formation of superconducting MgB2/Fe wires with high Jc. Physica C: Superconductivity and Its Applications, 2001, 361, 149-155.	1.2	126
143	Grain connectivity and vortex pinning in high-temperature superconductors. , 2001, , 129-168.		0
144	Enhancement of vortex pinning by Josephson coupling of two-dimensional pancake vortices in heavy lead-doped Bi2-xPbxSr2CaCu2Oy. Superconductor Science and Technology, 2001, 14, 479-485.	3 . 5	8

#	Article	IF	Citations
145	Scaling of the magnetic response and field dependence for the characteristic pinning energy in (Y,) Tj ETQq1 1	. 0.784314 rg	gBŢ/Overloc
146	Superconductivity and flux pinning in Y and heavily Pb codoped Bi-2212 single crystals. Journal of Applied Physics, 2001, 89, 7669-7671.	2.5	22
147	Effect of grain connectivity and density on the magnetoresistance in Ca or Li doped lanthanum manganites. Solid State Communications, 2000, 117, 53-56.	1.9	12
148	Enhanced flux pinning by Fe point defects in Bi2Sr2Ca(Cu1â^'xFex)2O8+δ single crystals. Physica C: Superconductivity and Its Applications, 2000, 337, 221-224.	1.2	22
149	Large enhancement of peak effect induced by heavy Pb doping in Bi2Sr2CaCu2O8+Î' single crystals. Physica C: Superconductivity and Its Applications, 2000, 337, 225-228.	1.2	6
150	Origin and characterisation of peak effect in pure and Pb doped Bi-2212 single crystals. Physica C: Superconductivity and Its Applications, 2000, 341-348, 651-652.	1.2	3
151	The effects of uranium doping and thermal neutron irradiation on the pinning properties of Ag/Bi-2223 tapes. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1119-1120.	1.2	7
152	Field and temperature dependence of critical current density of Fe doped Bi2212 single crystals. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1351-1352.	1.2	3
153	Flux creep in heavily lead doped Bi2212 single crystal. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1369-1370.	1.2	1
154	Measurements of the a.c. losses in Ag sheathed PbBi2223 tapes with twisted filaments. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2577-2578.	1.2	0
155	Structural, physical and electrochemical characterisation of LiNixCo1â^xO2 solid solutions. Journal of Power Sources, 2000, 85, 279-283.	7.8	36
156	Critical role of phase transformation during processing of Ag/Bi:2223 tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2436-2439.	1.7	11
157	Effect of cryogenic deformation on microstructure and critical current density in Ag/Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2726-2729.	1.7	2
158	Fabrication and properties of some Ag-alloy sheathed Bi-2223 tapes. IEEE Transactions on Applied Superconductivity, 1999, 9, 2710-2713.	1.7	7
159	Significantly enhanced critical current density in Bi-2223/Ag multifilamentary tapes by hot pressing. IEEE Transactions on Applied Superconductivity, 1999, 9, 2742-2745.	1.7	4
160	Reduction of the a.c. losses in Ag sheathed PbBi2223 tapes with twisted filaments. Physica C: Superconductivity and Its Applications, 1999, 325, 77-82.	1.2	5
161	Vortex pinning in heavily Pb-doped Bi2212 crystals. Physica C: Superconductivity and Its Applications, 1999, 324, 211-219.	1.2	7
162	Title is missing!. Journal of Materials Science Letters, 1999, 18, 525-528.	0.5	0

#	Article	IF	Citations
163	Effect of (Pb,Bi)3Sr2Ca2CuOy phase on critical current density of Ag/(Bi,Pb)2Sr2Ca2Cu3O10 tapes. Physica C: Superconductivity and Its Applications, 1998, 297, 1-9.	1.2	30
164	Dependence of critical current density and irreversibility field on the oxygen disordering for single domain melt-textured Y-123. Physica C: Superconductivity and Its Applications, 1998, 298, 80-84.	1.2	0
165	Improvement of grain connectivity in Bi2223/Ag tapes by reducing Bi2201 phase at grain boundaries. Physica C: Superconductivity and Its Applications, 1998, 300, 43-48.	1.2	21
166	Effect on the phase formation of Bi-2223 in some Ag-alloy sheathed PIT tapes. Physica C: Superconductivity and Its Applications, 1998, 307, 229-236.	1.2	23
167	Spin-glass state in Y0.7Ca0.3MnO3. Journal of Magnetism and Magnetic Materials, 1998, 182, L1-L4.	2.3	30
168	Impact of Pr on structural, superconducting and magnetic properties of Y1â^'xPrxBaSrCu3O7. Journal of Magnetism and Magnetic Materials, 1998, 182, L280-L286.	2.3	7
169	Large irreversible magnetization arising from the domain freezing in La0.7Ca0.3MnO3 perovskite. Solid State Communications, 1998, 108, 661-665.	1.9	18
170	Difference in mechanical properties of weak and strong links in Bi-2223/Ag superconducting tapes. Physica C: Superconductivity and Its Applications, 1998, 297, 10-14.	1.2	3
171	Diamagnetic transition of Bi2223/Ag tapes: the role of low-number stacks of superconducting layers. Physica C: Superconductivity and Its Applications, 1998, 299, 231-239.	1.2	2
172	Current limiting effect of residual Bi2Sr2CuO6 in silver-sheathed (Bi,Pb)2Sr2Ca2Cu3O10 superconductors. Physica C: Superconductivity and Its Applications, 1998, 300, 38-42.	1.2	40
173	Synthesis, structural aspects and superconductivity of La1â°'xRExBaCaCu3O7 with RE=Nd, Dy, Sm and Pr. Physica C: Superconductivity and Its Applications, 1998, 301, 48-54.	1.2	7
174	Effect of Cu-site Co, Ni and Ga substitution on the superconductivity of tetragonal LaBaCaCu3O7 system. Physica C: Superconductivity and Its Applications, 1998, 301, 205-214.	1.2	4
175	Grain connectivity and flux pinning in Bi-2223/Ag PIT tapes. Physica C: Superconductivity and Its Applications, 1998, 307, 29-45.	1.2	12
176	Thermal activation and ac-field-induced discontinuous domain jumps in perovskiteLa0.7Ca0.3MnO3. Physical Review B, 1998, 58, 2434-2437.	3.2	8
177	Effects of mechanical deformation on critical current of Bi-2223/Ag tapes. Superconductor Science and Technology, 1998, 11, 1098-1100.	3. 5	2
178	Cryogenic deformation process of high temperature superconductors. Superconductor Science and Technology, 1998, 11, 781-787.	3.5	8
179	Optimization of processing to improve critical current density of Ag/Bi-2223 tapes. Superconductor Science and Technology, 1998, 11, 915-920.	3.5	11
180	Effect of the phase compositions at the final stage of heat treatment on the critical current density in Bi:2223/Ag tapes. Superconductor Science and Technology, 1998, 11, 1057-1060.	3 . 5	8

#	Article	IF	Citations
181	Comparative studies of the fishtail effect associated with surface pinning and oxygen vacancy network in spiral and layer-by-layer grown single crystals. Superconductor Science and Technology, 1998, 11, 1041-1044.	3.5	0
182	Critical current density significantly enhanced by hot pressing in Bi-2223/Ag multifilamentary tapes. Superconductor Science and Technology, 1998, 11, 1101-1104.	3 . 5	12
183	Improvement of flux pinning by thermo-mechanical treatment of Bi-2223/Ag superconducting tapes. Superconductor Science and Technology, 1997, 10, 409-415.	3.5	14
184	Grain-boundary links and critical current of tapes. Superconductor Science and Technology, 1997, 10, 444-449.	3.5	8
185	Anomalous magnetization peak effect in spiral-grownBi2Sr2CaCu2Oycrystals. Physical Review B, 1997, 55, R3402-R3405.	3.2	9
186	Enhanced flux pinning from CuO inclusions in Bi2Sr2CaCu2Oycrystals. Journal of Applied Physics, 1997, 81, 533-535.	2.5	13
187	Effect on critical current density and irreversibility behaviour of mechanical deformation of Bi-(Pb)-Sr-Ca-Cu-O superconducting tapes. IEEE Transactions on Applied Superconductivity, 1997, 7, 1841-1844.	1.7	4
188	Comparative studies on single crystals and superconducting Bi-(Pb)-Sr-Ca-Cu-O tapes. IEEE Transactions on Applied Superconductivity, 1997, 7, 2219-2222.	1.7	1
189	Introduction of pinning centres into Bi - (Pb) - Sr - Ca - Cu - O superconductors. Superconductor Science and Technology, 1997, 10, A52-A67.	3.5	49
190	Two-dimensional effects in AC losses of Bi2Sr2Ca2Cu3Ox tapes. Physica C: Superconductivity and Its Applications, 1997, 274, 9-16.	1.2	8
191	Evidence of defect pinning in the superconducting Bi-(Pb)-Sr-Ca-Cu-O system. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2133-2134.	1.2	2
192	Improvement of transport properties in Bi-based superconducting tapes through the modification of precursor powder and heat treatment. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2595-2596.	1.2	2
193	Irreversibility behavior of different types of Biî—,(Pb)î—,Srî—,Caî—,Cuî—,O superconductors. Physica C: Superconductivity and Its Applications, 1997, 281, 321-324.	1.2	6
194	Effect of (Bi,Pb)2Sr2CuO6 phase on critical current density of Ag/(Bi,Pb)2Sr2Ca2Cu3O10 tapes. Physica C: Superconductivity and Its Applications, 1997, 291, 1-7.	1.2	53
195	Effect of final annealing temperature on critical current density of Ag/Bi-(Pb)-Sr-Ca-Cu-O tapes. Applied Superconductivity, 1997, 5, 171-177.	0.5	6
196	On the role of Bi2Sr2Ca1Cu2O8 and Bi2Sr2Cu1O6 on the weak links and critical currents in (Bi,Pb)2Sr2Ca2Cu2O10/Ag superconducting tapes. Applied Superconductivity, 1997, 5, 179-185.	0.5	0
197	Critical currents in Ag/Bi-2223 superconducting tapes: grain connectivity and flux pinning. Physica C: Superconductivity and Its Applications, 1997, 275, 327-332.	1.2	25
198	Non-exponential decrease of critical current with field in Bi-2223/Ag superconducting tapes at elevated fields. Physica C: Superconductivity and Its Applications, 1997, 277, 183-188.	1,2	5

#	Article	IF	CITATIONS
199	Peculiarities of texturing of Y-123 single domain samples by the use of Sm-123 seed and Y-211 substrate. Physica C: Superconductivity and Its Applications, 1997, 282-287, 505-506.	1.2	O
200	Two-peak structure of AC susceptibility of Bi2Sr2CaCu2Ox tapes. Physica C: Superconductivity and Its Applications, 1997, 282-287, 877-878.	1.2	1
201	Reflection of two-dimensionality on the temperature dependence of AC susceptibility. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1991-1992.	1.2	0
202	Enhanced flux pinning and fishtail effect in spiral grown Bi2Sr2CaCu2Oy single crystals. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2125-2126.	1.2	2
203	Influence of thermomechanical treatment of Bi-2223/Ag tapes on Ic vs. H at elevated fields. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2283-2284.	1.2	1
204	Two-peak structure of AC susceptibility of Bi2Sr2CaCu2Ox tapes. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2621-2622.	1.2	1
205	Spiral growth of Bi 2 Sr 2 CaCu 2 O y single crystals using KCl flux technique. Journal of Crystal Growth, 1997, 173, 380-385.	1.5	9
206	SECOND PEAK IN AC LOSSES OF Bi2Sr2Ca1Cu2Ox TAPES. Modern Physics Letters B, 1996, 10, 1245-1260.	1.9	3
207	Effect of hot pressing on the weak-link behaviour of Ag clad Bi based superconducting tapes. Physica C: Superconductivity and Its Applications, 1996, 259, 187-192.	1.2	19
208	Critical currents through strong links in Ag/Biî—¸Srî—¸Caî—¸Cuî—¸O superconducting tapes. Physica C: Superconductivity and Its Applications, 1996, 271, 51-58.	1.2	32
209	Formation of weak and strong links in Ag/Bi-2223 superconducting tapes. Physica C: Superconductivity and Its Applications, 1996, 271, 59-66.	1.2	22
210	The effect of mechanical deformation on silver - core interface and critical current density in Ag - Bi-2223 single- and multifilament tapes. Superconductor Science and Technology, 1996, 9, 875-880.	3.5	32
211	Preparation of Ag - Bi-2223 tape by controlling the phase evolution prior to sintering. Superconductor Science and Technology, 1996, 9, 881-887.	3.5	33
212	Depinning current for flux lines in Ag/BSCCO superconducting tapes. Superconductor Science and Technology, 1995, 8, 904-908.	3.5	8
213	Variation of relaxation frequencies with depth in amorphous Co74Fe6B20 ribbons. Physica Status Solidi A, 1993, 138, 297-305.	1.7	0
214	Surface and volume pinning of domain walls in amorphous ribbons. Journal of Magnetism and Magnetic Materials, 1993, 123, 41-51.	2.3	4
215	Domain Wall Pinning in Amorphous Metallic Ribbons Carrying an Electric Current. Physica Status Solidi A, 1992, 129, 519-528.	1.7	17
216	Shift of Hysteresis Loop of Amorphous Ribbons Carrying an Electrical Current. Physica Status Solidi A, 1992, 134, 521-528.	1.7	6

#	Article	IF	Citations
217	Reduction of loss in composite magnetic material. Journal of Magnetism and Magnetic Materials, 1992, 110, L25-L28.	2.3	11
218	Frequency and peak magnetization dependence of the coercive field in Fe-Ni-B-Si amorphous alloys. Journal of Magnetism and Magnetic Materials, 1992, 110, 215-220.	2.3	4
219	Magnetization processes in amorphous ribbons influenced by electrical current in the ribbon. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 359-360.	2.3	10
220	Process of magnetization in amorphous ribbons carrying an electric current. Journal of Magnetism and Magnetic Materials, 1992, 109, 191-196.	2.3	6
221	Domain wall stabilization in Co ₇₄ Fe ₆ B ₂₀ amorphous alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 63, 1235-1245.	0.6	16
222	Distinction of different types of pinning centers in metallic glasses. Materials Science & Distinction of different types of pinning centers in metallic glasses. Materials Science & Distinct & Disti	5.6	2
223	The variation of the domain wall pinning strength with the depth within the Co74Fe6B20 amorphous alloy. Journal of Magnetism and Magnetic Materials, 1991, 96, L13-L16.	2.3	21
224	Reduction of loss using the pinning inhomogeneity in Co-based amorphous ribbons. Journal of Magnetism and Magnetic Materials, 1991, 101, 19-20.	2.3	1
225	Distinction of different types of pinning centers in metallic glasses. , 1991, , 192-195.		0
226	The investigation of the process of magnetization in FeNiBSi glasses by means of the Barkhausen jumps. Journal of Magnetism and Magnetic Materials, 1990, 86, L1-L6.	2.3	5
227	Reduction of loss in MetglasR 2714 alloy. Journal of Magnetism and Magnetic Materials, 1990, 92, L25-L29.	2.3	21
228	The influence of pinning centres on the magnetization of a Co70.3Fe4.7Si15B10 amorphous alloy. Journal of Magnetism and Magnetic Materials, 1990, 87, 339-344.	2.3	12
229	Inter- and intragrain critical currents in a dense YBa2Cu3O7ceramic. Superconductor Science and Technology, 1989, 2, 164-168.	3.5	1
230	The influence of pinning centres on magnetization and loss in Fe-Ni-B-Si amorphous alloys. Journal of Magnetism and Magnetic Materials, 1989, 82, 5-11.	2.3	32
231	Critical currents in high-quality YBaCuO ceramics investigated by magnetization, a.c. susceptibility and electrical transport. Journal of the Less Common Metals, 1989, 151, 89-96.	0.8	19
232	Robustness in Coupling between Iron and Rare Earth Spins in Rare Earth Orthoferrites. Materials Science Forum, 0, 985, 29-34.	0.3	2