Biao Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4315029/publications.pdf Version: 2024-02-01

RIAO LIN

#	Article	IF	CITATIONS
1	Oriented Crystallization of Hydroxyapatite in Self-Assembled Peptide Fibrils as a Bonelike Material. ACS Biomaterials Science and Engineering, 2023, 9, 1808-1814.	5.2	4
2	Spiers Memorial Lecture: Assembly-based pathways of crystallization. Faraday Discussions, 2022, 235, 9-35.	3.2	10
3	Frontispiece: Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
4	Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie, 2022, 134, .	2.0	2
5	Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
6	Frontispiz: Peptoidâ€Directed Formation of Fiveâ€Fold Twinned Au Nanostars through Particle Attachment and Facet Stabilization. Angewandte Chemie, 2022, 134, .	2.0	0
7	Injectable Dualâ€Dynamicâ€Bond Crossâ€Linked Hydrogel for Highly Efficient Infected Diabetic Wound Healing. Advanced Healthcare Materials, 2022, 11, e2200516.	7.6	35
8	Effect of aspartic acid on the crystallization kinetics of ACP and dentin remineralization. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104226.	3.1	9
9	Revealing Au ₁₃ as Elementary Clusters During the Early Formation of Au Nanocrystals. Journal of Physical Chemistry Letters, 2021, 12, 5938-5943.	4.6	6
10	Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy. Crystal Growth and Design, 2021, 21, 5126-5134.	3.0	29
11	Biomineralization. , 2021, , .		0
12	Organic–Inorganic Copolymerization for a Homogenous Composite without an Interphase Boundary. Angewandte Chemie, 2020, 132, 2087-2091.	2.0	0
13	Organic–Inorganic Copolymerization for a Homogenous Composite without an Interphase Boundary. Angewandte Chemie - International Edition, 2020, 59, 2071-2075.	13.8	57
14	Role of the Solvent–Surfactant Duality of Ionic Liquids in Directing Two-Dimensional Particle Assembly. Journal of Physical Chemistry C, 2020, 124, 24215-24222.	3.1	8
15	The formation and shape transformation mechanism of a triangular Au nanoplate revealed by liquid-cell TEM. Nanoscale, 2020, 12, 19592-19596.	5.6	10
16	Recent experimental explorations of non-classical nucleation. CrystEngComm, 2020, 22, 4057-4073.	2.6	36
17	Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomaterials Science and Engineering, 2020, 6, 3327-3334.	5.2	22
18	Surface-anchored framework for generating RhD-epitope stealth red blood cells. Science Advances, 2020, 6, eaaw9679.	10.3	42

Biao Jin

#	Article	IF	CITATIONS
19	Shape-preserving amorphous-to-crystalline transformation of CaCO ₃ revealed by in situ TEM. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3397-3404.	7.1	97
20	Osteoporotic Bone Recovery by a Highly Boneâ€Inductive Calcium Phosphate Polymerâ€Induced Liquidâ€Precursor. Advanced Science, 2019, 6, 1900683.	11.2	80
21	Calcium Phosphate Nanocluster-Loaded Injectable Hydrogel for Bone Regeneration. ACS Applied Bio Materials, 2019, 2, 4408-4417.	4.6	19
22	Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Science Advances, 2019, 5, eaaw9569.	10.3	168
23	Quantitative investigation of the formation and growth of palladium fractal nanocrystals by liquid-cell transmission electron microscopy. Chemical Communications, 2019, 55, 8186-8189.	4.1	10
24	Revealing the Cluster loud and Its Role in Nanocrystallization. Advanced Materials, 2019, 31, e1808225.	21.0	41
25	Understanding Anisotropic Growth of Au Penta-Twinned Nanorods by Liquid Cell Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2019, 10, 1443-1449.	4.6	14
26	Anisotropic Epitaxial Behavior in the Amorphous Phase-Mediated Hydroxyapatite Crystallization Process: A New Understanding of Orientation Control. Journal of Physical Chemistry Letters, 2019, 10, 7611-7616.	4.6	15
27	Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature, 2019, 574, 394-398.	27.8	166
28	Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control. Advanced Materials, 2018, 30, 1704876.	21.0	139
29	Artificial Organelles: Nanomaterial-Based Organelles Protect Normal Cells against Chemotherapy-Induced Cytotoxicity (Adv. Mater. 27/2018). Advanced Materials, 2018, 30, 1870202.	21.0	2
30	In Situ Liquid Cell TEM Reveals Bridge-Induced Contact and Fusion of Au Nanocrystals in Aqueous Solution. Nano Letters, 2018, 18, 6551-6556.	9.1	68
31	Synergic Effect of Sr ²⁺ and Mg ²⁺ on the Stabilization of Amorphous Calcium Phosphate. Crystal Growth and Design, 2018, 18, 6054-6060.	3.0	20
32	Nanomaterialâ€Based Organelles Protect Normal Cells against Chemotherapyâ€Induced Cytotoxicity. Advanced Materials, 2018, 30, e1801304.	21.0	49
33	Biomineralization: From Material Tactics to Biological Strategy. Advanced Materials, 2017, 29, 1605903.	21.0	239
34	Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy. Environmental Science & Technology, 2017, 51, 12717-12726.	10.0	28
35	Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress. Angewandte Chemie, 2016, 128, 13028-13032.	2.0	6
36	Innenrücktitelbild: Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress (Angew. Chem. 41/2016). Angewandte Chemie, 2016, 128, 13105-13105.	2.0	0

#	Article	IF	CITATIONS
37	Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress. Angewandte Chemie - International Edition, 2016, 55, 12836-12840.	13.8	31