
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular crystallization of rubrene thin films assisted by gold nanoparticles. Current Applied Physics, 2022, , .	2.4	1
2	High hysteresis and distinctive optoelectronic memory effect for ambipolar thin-film transistors using a conjugated polymer having Donor–Acceptor heterojunction. Organic Electronics, 2022, , 106599.	2.6	1
3	Charge-Transfer Effect and Enhanced Photoresponsivity of WS ₂ - and MoSe ₂ -Based Field Effect Transistors with ï€-Conjugated Polyelectrolyte. ACS Applied Materials & Interfaces, 2021, 13, 40880-40890.	8.0	9
4	Distinctive Field-Effect Transistors and Ternary Inverters Using Cross-Type WSe ₂ /MoS ₂ Heterojunctions Treated with Polymer Acid. ACS Applied Materials & Interfaces, 2020, 12, 36530-36539.	8.0	25
5	Enhanced blue photoluminescence and new crystallinity of Ag/organic rubrene core-shell nanoparticles through hydrothermal treatment. Current Applied Physics, 2020, 20, 1201-1206.	2.4	2
6	Photosensitive n-Type Doping Using Perovskite CsPbX ₃ Quantum Dots for Two-Dimensional MSe ₂ (M = Mo and W) Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 25159-25167.	8.0	21
7	Photo-responsive MoS ₂ /organic-rubrene heterojunction field-effect-transistor: application to photo-triggered ternary inverter. Semiconductor Science and Technology, 2020, 35, 065020.	2.0	15
8	Significantly Increased Photoresponsivity of WSe ₂ â€Based Transistors through Hybridization with Goldâ€Tetraphenylporphyrin as Efficient <i>n</i> â€Type Dopant. Advanced Electronic Materials, 2019, 5, 1800802.	5.1	8
9	Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Nano Research, 2019, 12, 405-412.	10.4	33
10	Energy and charge transfer effects for hybrids of perovskite CsPbBr3 quantum dots on organic semiconducting rubrene nanosheet. Organic Electronics, 2019, 65, 243-250.	2.6	3
11	Optical Characteristics of Hybrid-Nanostructures Using 2D Semiconductors and Applications to Photo-Triggered Field-Effect-Transistors and Sensitive Photodetectors. , 2019, , .		Ο
12	Local Enhancement of Exciton Emission of Monolayer MoS ₂ by Copper Phthalocyanine Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 6794-6800.	3.1	19
13	Unusual enhancement of fluorescence and Raman scattering of core-shell nanostructure of polydiacetylene and Ag nanoparticle. Synthetic Metals, 2018, 236, 19-23.	3.9	10
14	Hybrid Characteristics of MoS ₂ Monolayer with Organic Semiconducting Tetracene and Application to Anti-Ambipolar Field Effect Transistor. ACS Applied Materials & Interfaces, 2018, 10, 32556-32566.	8.0	43
15	Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array. Applied Physics Letters, 2018, 112, .	3.3	6
16	Photovoltaic Field-Effect Transistors Using a MoS ₂ and Organic Rubrene van der Waals Hybrid. ACS Applied Materials & Interfaces, 2018, 10, 29848-29856.	8.0	48
17	Optically active charge transfer in hybrids of Alq ₃ nanoparticles and MoS ₂ monolayer. Nanotechnology, 2017, 28, 185702.	2.6	11
18	Sensitive optical bio-sensing of p-type WSe ₂ hybridized with fluorescent dye attached DNA by doping and de-doping effects. Nanotechnology, 2017, 28, 435501.	2.6	22

#	Article	IF	CITATIONS
19	Waveguiding characteristics of surface enhanced Raman scattering signals along crystalline organic semiconducting microrod. Optics Express, 2017, 25, 6215.	3.4	6
20	Protein Recognition by Phase Transition of Aptamer‣inked Polythiophene Single Nanowire. Small, 2016, 12, 1154-1158.	10.0	9
21	Enhanced Local and Nonlocal Photoluminescence of Organic Rubrene Microrods using Surface Plasmon of Gold Nanoparticles: Applications to Ultrasensitive and Remote Biosensing. Journal of Physical Chemistry C, 2016, 120, 11612-11620.	3.1	5
22	Abnormal behavior of optical signal transfer in ï€-conjugated organic microplates and focused electron-beam-treated nanorods. Synthetic Metals, 2016, 216, 59-64.	3.9	1
23	Photo-responsive transistors of CVD grown single-layer MoS2 and its nanoscale optical characteristics. Current Applied Physics, 2016, 16, 1320-1325.	2.4	10
24	Surface-enhanced Raman scattering for 2-D WSe_2 hybridized with functionalized gold nanoparticles. Optics Express, 2016, 24, 27546.	3.4	10
25	Variation of photoluminescence of organic semiconducting-rubrene microplate depending on the thicknesses of two-dimensional MoS2 layers. Synthetic Metals, 2016, 220, 8-13.	3.9	9
26	Phaseâ€Transition Nanowires: Protein Recognition by Phase Transition of Aptamerâ€Linked Polythiophene Single Nanowire (Small 9/2016). Small, 2016, 12, 1153-1153.	10.0	0
27	Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches. Nano Research, 2015, 8, 790-800.	10.4	24
28	High-yield and environment-minded fabrication of nanoporous anodic aluminum oxide templates. RSC Advances, 2015, 5, 26872-26877.	3.6	12
29	Enhanced luminescence and photocurrent of organic microrod/ZnO nanoparticle hybrid system: Nanoscale optical and electrical characteristics. Electronic Materials Letters, 2015, 11, 741-748.	2.2	8
30	Electrically controlled photoluminescence efficiency of organic rubrene microplates. Synthetic Metals, 2015, 199, 394-399.	3.9	2
31	Quantum dot and π-conjugated molecule hybrids: nanoscale luminescence and application to photoresponsive molecular electronics. NPG Asia Materials, 2014, 6, e103-e103.	7.9	19
32	Fine Control of Photoluminescence and Optical Waveguiding Characteristics of Organic Rubrene Nanorods Using Focused Electron-Beam Irradiation. Journal of Physical Chemistry C, 2014, 118, 30179-30186.	3.1	8
33	Remote Biosensing with Polychromatic Optical Waveguide Using Blue Lightâ€Emitting Organic Nanowires Hybridized with Quantum Dots. Advanced Functional Materials, 2014, 24, 3684-3691.	14.9	23
34	Optical Waveguiding: Remote Biosensing with Polychromatic Optical Waveguide Using Blue Light-Emitting Organic Nanowires Hybridized with Quantum Dots (Adv. Funct. Mater. 24/2014). Advanced Functional Materials, 2014, 24, 3683-3683.	14.9	2
35	Nanoscale optoelectronic properties of organic p–n junction P3HT/PCBM nanoparticles hybridized with CdSe/ZnS quantum dots. Synthetic Metals, 2014, 193, 17-22.	3.9	5
36	Luminescence enhancement by surface plasmon assisted Förster resonance energy transfer in quantum dots and light emitting polymer hybrids with Au nanoparticles. Synthetic Metals, 2014, 187, 130-135.	3.9	17

#	Article	IF	CITATIONS
37	Enhanced photoresponsive mobility of rubrene nanosheet-based organic field effect transistors through hybridization with CdSe/ZnS quantum dots. Synthetic Metals, 2014, 190, 8-12.	3.9	4
38	Energy transfer effect of hybrid organic rubrene nanorod with CdSe/ZnS quantum dots: Application to optical waveguiding modulators. Synthetic Metals, 2014, 198, 285-292.	3.9	1
39	Dual-mode waveguiding of Raman and luminescence signals in a crystalline organic microplate. Journal of Materials Chemistry C, 2014, 2, 6077-6083.	5.5	14
40	Nanoscale photovoltaic characteristics of single quantum dot hybridized with poly(3-hexylthiophene). Organic Electronics, 2014, 15, 2893-2902.	2.6	5
41	Gold nanoparticle hybridized rubrene nanofibers made by electrospinning: enhancement of optical and structural properties. Journal of Materials Chemistry C, 2014, 2, 1830.	5.5	7
42	Fine luminescent patterning on ZnO nanowires and films using focused electron-beam irradiation. Current Applied Physics, 2014, 14, 1228-1233.	2.4	4
43	Hybrid effect of doped and de-doped poly(3-methylthiophene) nanowires with CdSe/ZnS quantum dots: Nanoscale luminescence variation. Synthetic Metals, 2013, 164, 22-26.	3.9	5
44	Hybrid effects of CdSe/ZnS quantum dots on p–n heterojunction organic nanowire. Synthetic Metals, 2013, 163, 1-6.	3.9	6
45	Nanoscale luminescence characteristics of CdSe/ZnS quantum dots hybridized with organic and metal nanowires: energy transfer effects. Journal of Materials Chemistry C, 2013, 1, 2145.	5.5	10
46	Synthesis, Characteristics, and Applications of Intrinsically Light-Emitting Polymer Nanostructures. Advances in Polymer Science, 2013, , 201-244.	0.8	4
47	Remarkable Mobility Increase and Threshold Voltage Reduction in Organic Fieldâ€Effect Transistors by Overlaying Discontinuous Nanoâ€Patches of Chargeâ€Transfer Doping Layer on Top of Semiconducting Film. Advanced Materials, 2013, 25, 719-724.	21.0	59
48	Organic solar cells using plasmonics of Ag nanoprisms. Organic Electronics, 2013, 14, 278-285.	2.6	43
49	Surface enhanced Raman scattering effect of CdSe/ZnS quantum dots hybridized with Au nanowire. Applied Physics Letters, 2013, 102, 033109.	3.3	18
50	Photo-induced negative differential resistance of organic thin film transistors using anthracene derivatives. Organic Electronics, 2013, 14, 2204-2209.	2.6	14
51	Oligonucleotide assisted light-emitting Alq3 microrods: energy transfer effect with fluorescent dyes. Chemical Communications, 2013, 49, 5360.	4.1	34
52	Organic Field-Effect Transistors: Remarkable Mobility Increase and Threshold Voltage Reduction in Organic Field-Effect Transistors by Overlaying Discontinuous Nano-Patches of Charge-Transfer Doping Layer on Top of Semiconducting Film (Adv. Mater. 5/2013). Advanced Materials, 2013, 25, 646-646.	21.0	3
53	Polarized photoluminescence characteristics of rubrene sheets with nanometer thickness. Physical Review B, 2012, 86, .	3.2	7
54	Phototransistors: Highâ€Detectivity Multilayer MoS ₂ Phototransistors with Spectral Response from Ultraviolet to Infrared (Adv. Mater. 43/2012). Advanced Materials, 2012, 24, 5902-5902.	21.0	24

#	Article	IF	CITATIONS
55	Photoluminescence and Optical Waveguiding Characteristics of Bisalkoxy Tin(IV) Porphyrin Microcrystals. Chemistry - an Asian Journal, 2012, 7, 2768-2771.	3.3	8
56	Single nanoparticle of organic p-type and n-type hybrid materials: nanoscale phase separation and photovoltaic effect. Journal of Materials Chemistry, 2012, 22, 2485-2490.	6.7	17
57	Self-Assembled Monolayers Made of 6-(5-((6-((5-hexylthiophen-2-yl)ethynyl)-9,10-bis(phenylethynyl)anthracen-2-yl)ethynyl)thiophen-2-yl)hexyl 3-(Triethoxysilyl)Propylcarbamate for Ultrathin Film Transistors. Langmuir, 2012, 28, 10948-10955.	3.5	7
58	Luminescence, charge mobility, and optical waveguiding of two-dimensional organic rubrene nanosheets: Comparison with one-dimensional nanorods. Organic Electronics, 2012, 13, 2047-2055.	2.6	30
59	Photoresponsive ambipolar transport characteristics of organic thin film transistors using soluble HB-ant-THT and PCBM composites. Synthetic Metals, 2012, 162, 332-336.	3.9	6
60	Photovoltaic characteristics of organic solar cells using Zn–porphyrin derivatives with controlled Ï€-conjugation structures. Synthetic Metals, 2012, 162, 813-819.	3.9	14
61	Nanoscale luminescence and optical waveguiding characteristics of organic CN-TFMBE nanowires and hybrid coaxial nanowires. Synthetic Metals, 2012, 162, 1299-1302.	3.9	2
62	Highâ€Detectivity Multilayer MoS ₂ Phototransistors with Spectral Response from Ultraviolet to Infrared. Advanced Materials, 2012, 24, 5832-5836.	21.0	970
63	Anisotropic optical absorption of organic rubrene single nanoplates and thin films studied by μ-mapping absorption spectroscopy. Applied Physics Letters, 2012, 101, 113103.	3.3	21
64	Luminescence variation of organic Alq3 nanoparticles on surface of Au nanoparticles and graphene. Synthetic Metals, 2012, 162, 1852-1857.	3.9	15
65	Plasmonâ€enhanced Raman scattering of coaxial hybrid nanowires made with lightâ€emitting polymer and gold. Journal of Raman Spectroscopy, 2012, 43, 965-970.	2.5	6
66	Electrospinning and optical characterization of organic rubrene nanofibers. Journal of Applied Physics, 2012, 111, .	2.5	14
67	Electric-field controlled light-emissive characteristics in nanoscale for polymer/fullerene organic solar cells. Organic Electronics, 2012, 13, 1377-1381.	2.6	2
68	Highly bright and sharp light emission of a single nanoparticle of crystalline rubrene. Journal of Materials Chemistry, 2011, 21, 8002.	6.7	28
69	DNA detection using a light-emitting polymer single nanowire. Chemical Communications, 2011, 47, 7944.	4.1	21
70	Core–shell nanoparticle of silver coated with light-emitting rubrene: Surface plasmon enhanced photoluminescence. Synthetic Metals, 2011, 161, 2103-2106.	3.9	12
71	Nanoscale optical and photoresponsive electrical properties of P3HT and PCBM composite nanowires. Organic Electronics, 2011, 12, 1695-1700.	2.6	25
72	Tuning photoluminescence of organic rubrene nanoparticles through a hydrothermal process. Nanoscale Research Letters, 2011, 6, 405.	5.7	12

#	Article	IF	CITATIONS
73	Evolution of Light Absorption and Emission Characteristics of Organic Perylene Nanoparticles through Hydrothermal Process: Application to Solar Cells. Advanced Functional Materials, 2011, 21, 3056-3063.	14.9	5
74	Fine Characteristics Tailoring of Organic and Inorganic Nanowires Using Focused Electronâ€Beam Irradiation. Angewandte Chemie - International Edition, 2011, 50, 3734-3738.	13.8	23
75	Nanojunctions in conducting polypyrrole single nanowire made by focused electron beam: Charge transport characteristics. Journal of Applied Physics, 2011, 110, 024308.	2.5	2
76	Tuning optical properties of poly(3-hexylthiophene) nanoparticles through hydrothermal processing. Science and Technology of Advanced Materials, 2011, 12, 025002.	6.1	12
77	Gate-field dependent photosensitivity of soluble 1,2,4,5-tetra(5′-hexyl-[2,2′]terthiophenyl-5-vinyl)-benzene based organic thin film transistors. Journal of Applied Physics, 2010, 108, 023703.	2.5	6
78	Photoresponsive characteristics and hysteresis of soluble 6,13-bis(triisopropyl-silylethynyl)-pentacene-based organic thin film transistors with and without annealing. Journal of Applied Physics, 2010, 107, 033711.	2.5	10
79	Light-Emitting Color Barcode Nanowires Using Polymers: Nanoscale Optical Characteristics. ACS Nano, 2010, 4, 5155-5162.	14.6	46
80	Nanoscale photoluminescence of light-emitting poly (3-methylthiophene) nanotubes hybridized with Au nanoparticles. Synthetic Metals, 2010, 160, 604-608.	3.9	8
81	Hybrid nanostructures using π-conjugated polymers and nanoscale metals: synthesis, characteristics, and optoelectronic applications. Chemical Society Reviews, 2010, 39, 2439.	38.1	113
82	Rectangular Nanotubes of Copper Phthalocyanine: Application to a Single Nanotube Transistor. Chemistry of Materials, 2010, 22, 2219-2225.	6.7	42
83	Poly(3-hexylthiophene)/Multiwalled Carbon Hybrid Coaxial Nanotubes: Nanoscale Rectification and Photovoltaic Characteristics. ACS Nano, 2010, 4, 4197-4205.	14.6	34
84	Effects of electron-beam irradiation on conducting polypyrrole nanowires. Applied Physics Letters, 2009, 94, 053111.	3.3	16
85	Luminescent Efficiency and Color for Poly(3-butylthiophene) Nanowires Through Metal Coating: Color CCD Confirmation. Electrochemical and Solid-State Letters, 2009, 12, K5.	2.2	7
86	Tuning and Enhancing Photoluminescence of Lightâ€Emitting Polymer Nanotubes through Electronâ€Beam Irradiation. Advanced Functional Materials, 2009, 19, 567-572.	14.9	29
87	Lightâ€Emitting Rubrene Nanowire Arrays: A Comparison with Rubrene Single Crystals. Advanced Functional Materials, 2009, 19, 704-710.	14.9	40
88	Surface modification of Ni and Co metal nanowires through MeV high energy ion irradiation. Current Applied Physics, 2009, 9, 847-851.	2.4	13
89	Partial metal coated light emitting polymers: Direct observation of enhanced photoluminescence. Synthetic Metals, 2009, 159, 22-25.	3.9	2
90	High energy ion irradiation effect on light-emitting poly(3-methylthiophene) (P3MT) nanowires. Synthetic Metals, 2009, 159, 1191-1194.	3.9	1

#	Article	IF	CITATIONS
91	Percolation threshold related to field-effect transistors using thin multi-walled carbon nanotubes composites. Synthetic Metals, 2009, 159, 2034-2037.	3.9	4
92	Complex Nanoparticle of Light-Emitting MEH-PPV with Au: Enhanced Luminescence. ACS Nano, 2009, 3, 1329-1334.	14.6	52
93	Significantly Enhanced Photoluminescence of Doped Polymerâ€Metal Hybrid Nanotubes. Advanced Functional Materials, 2008, 18, 2526-2534.	14.9	38
94	Highly Sensitive, Photocontrolled, Organic Thinâ€Film Transistors Using Soluble Starâ€shaped Conjugated Molecules. Advanced Functional Materials, 2008, 18, 2905-2912.	14.9	97
95	Electrochemical polymerization of polypyrrole (PPy) and poly(3-hexylthiophene) (P3HT) using functionalized single-wall carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 72-76.	4.7	7
96	Fabrication and electrical characteristics of organic thin film transistor using π-conjugated dendrimer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 431-434.	4.7	12
97	Light emission of a single strand of poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire. Synthetic Metals, 2008, 158, 90-94.	3.9	14
98	Comparison of electrical characteristics for p-type and n-type organic thin film transistors using copper phthalocyanine. Synthetic Metals, 2008, 158, 553-555.	3.9	11
99	Electrochemical Synthesis and Nanoscale Photoluminescence of Poly(3-butylthiophene) Nanowire. Electrochemical and Solid-State Letters, 2008, 11, K69.	2.2	11
100	Conducting polymer/clay nanocomposites and their applications. Journal of Nanoscience and Nanotechnology, 2008, 8, 1559-81.	0.9	7
101	Raman Study of Polymer–Metal Hybrid Nanotubes Using Atomic Force/Confocal Combined Microscope. Japanese Journal of Applied Physics, 2007, 46, 5556.	1.5	12
102	Carbon Nanotube-Organized Polymeric Fibers and Measurement of Their Electrical Conductivity. Molecular Crystals and Liquid Crystals, 2007, 464, 15/[597]-21/[603].	0.9	3
103	Electrical characteristics of organic perylene single-crystal-based field-effect transistors. Journal of Applied Physics, 2007, 102, .	2.5	15
104	Confocal Raman spectroscopy of single poly(3-methylthiophene) nanotubes. Journal of Applied Physics, 2007, 101, 053514.	2.5	20
105	Confocal microscope photoluminescence and electrical characteristics of single poly(3-hexylthiophene) nanowire strand. Applied Physics Letters, 2007, 91, .	3.3	18
106	New growth method of rubrene single crystal for organic field-effect transistor. Synthetic Metals, 2007, 157, 481-484.	3.9	25
107	Doped and de-doped polypyrrole nanowires by using a BMIMPF6 ionic liquid. Synthetic Metals, 2007, 157, 910-913.	3.9	30
108	Pet Fabric/Poly(3,4-Ethylenedioxythiophene) Composite with High Electrical Conductivity for EMI Shielding. Molecular Crystals and Liquid Crystals, 2007, 464, 109/[691]-117/[699].	0.9	16

#	Article	IF	CITATIONS
109	Polyaniline Doped with Dimethyl Sulfate as a Nucleophilic Dopant and Its Electrochemical Properties as an Electrode in a Lithium Secondary Battery and a Redox Supercapacitor. Journal of Physical Chemistry B, 2007, 111, 731-739.	2.6	76
110	Bright Light Emission of a Single Polythiophene Nanotube Strand with a Nanometerâ€scale Metal Coating. Advanced Materials, 2007, 19, 2824-2829.	21.0	58
111	Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Physical Review B, 2006, 74, .	3.2	80
112	Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macromolecular Research, 2006, 14, 456-460.	2.4	45
113	Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatment. Nanotechnology, 2006, 17, 3506-3511.	2.6	41
114	Flexible all-polymer field effect transistors with optical transparency using electrically conducting polymers. Thin Solid Films, 2005, 477, 169-173.	1.8	43
115	Formation of Nanoislands on Conducting Poly(3,4-ethylenedioxythiophene) Films by High-Energy-Ion Irradiation: Applications as Field Emitters and Capacitor Electrodes. Advanced Functional Materials, 2005, 15, 1465-1470.	14.9	15
116	Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) nanotubes and nanowires. Synthetic Metals, 2005, 150, 279-284.	3.9	222
117	Poly (vinylidene fluoride) transducers with highly conducting poly (3,4-ethylenedioxythiophene) electrodes. Synthetic Metals, 2005, 152, 49-52.	3.9	36
118	Electrically conducting polypyrrole fibers spun by electrospinning. Synthetic Metals, 2005, 153, 61-64.	3.9	108
119	Humidity-dependent characteristics of thin film poly(3,4-ethylenedioxythiophene) field-effect transistor. Synthetic Metals, 2005, 155, 176-179.	3.9	29
120	Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Current Applied Physics, 2004, 4, 577-580.	2.4	99
121	Low dielectric constant of MeV ion-implanted poly(vinylidene fluoride). Macromolecular Research, 2003, 11, 9-13.	2.4	1
122	Flexible and transparent organic film speaker by using highly conducting PEDOT/PSS as electrode. Synthetic Metals, 2003, 139, 457-461.	3.9	60
123	ALL-POLYMER FET BASED ON SIMPLE PHOTOLITHOGRAPHIC MICRO-PATTERNING OF ELECTRICALLY CONDUCTING POLYMER. Molecular Crystals and Liquid Crystals, 2003, 405, 171-178.	0.9	6
124	CHARACTERISTICS OF ELECTRICALLY CONDUCTING POLYMER-COATED TEXTILES. Molecular Crystals and Liquid Crystals, 2003, 405, 161-169.	0.9	71
125	Improved Conducting States Induced by an Electrochemical Charging Process in Polyaniline Film Doped with New Dopants. Journal of the Electrochemical Society, 2002, 149, A478.	2.9	7
126	Electrical characteristics of light-emitting diode based on poly(p-phenylenevinylene) derivatives: CzEH-PPV and OxdEH-PPV. Synthetic Metals, 2002, 130, 279-283.	3.9	21

JINSOO JOO

#	Article	IF	CITATIONS
127	Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 2002, 13, 577-583.	3.2	66
128	Nanocomposite of Polyaniline and Na+â^'Montmorillonite Clay. Macromolecules, 2002, 35, 1419-1423.	4.8	199
129	Characterization of highly conducting lithium salt doped polyaniline films prepared from polymer solution. Polymer, 2001, 42, 9355-9360.	3.8	71
130	Comparison of lithium//polyaniline secondary batteries with different dopants of HCl and lithium ionic salts. Journal of Power Sources, 2000, 88, 197-201.	7.8	40
131	Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synthetic Metals, 2000, 110, 213-217.	3.9	101
132	Spectroscopic and morphological studies of highly conducting ion-implanted rigid-rod and ladder polymers. Macromolecules, 1992, 25, 5828-5835.	4.8	45