Harish Sivasankaran ## List of Publications by Citations Source: https://exaly.com/author-pdf/4314606/harish-sivasankaran-publications-by-citations.pdf Version: 2024-04-20 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 1,756 48 25 41 h-index g-index citations papers 2,058 5.2 4.9 53 avg, IF L-index ext. citations ext. papers | # | Paper | IF | Citations | |----|--|------|-----------| | 48 | Mechanical property evaluation of natural fiber coir composite. <i>Materials Characterization</i> , 2009 , 60, 44-49 | 3.9 | 264 | | 47 | Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. <i>Applied Thermal Engineering</i> , 2015 , 80, 205-211 | 5.8 | 160 | | 46 | Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. <i>International Journal of Heat and Mass Transfer</i> , 2012 , 55, 3885-3890 | 4.9 | 105 | | 45 | Anomalous Thermal Conduction Characteristics of Phase Change Composites with Single-Walled Carbon Nanotube Inclusions. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15409-15413 | 3.8 | 65 | | 44 | Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control. <i>ACS Nano</i> , 2013 , 7, 11183-9 | 16.7 | 62 | | 43 | Thermal conductivity enhancement of ethylene glycol and water with graphene nanoplatelets. <i>Thermochimica Acta</i> , 2016 , 642, 32-38 | 2.9 | 62 | | 42 | Enhanced heat transfer performance of an automobile radiator with graphene based suspensions. <i>Applied Thermal Engineering</i> , 2017 , 123, 50-60 | 5.8 | 59 | | 41 | Microstructural study of cryogenically treated En 31 bearing steel. <i>Journal of Materials Processing Technology</i> , 2009 , 209, 3351-3357 | 5.3 | 55 | | 40 | Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 115, 580-588 | 4.9 | 54 | | 39 | Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. <i>Carbon</i> , 2012 , 50, 2635-2640 | 10.4 | 53 | | 38 | Thermal conductivity enhancement of lauric acid phase change nanocomposite in solid and liquid state with single-walled carbon nanohorn inclusions. <i>Thermochimica Acta</i> , 2015 , 600, 1-6 | 2.9 | 51 | | 37 | Thermal conductivity and specific heat capacity of water thylene glycol mixture-based nanofluids with graphene nanoplatelets. <i>Journal of Thermal Analysis and Calorimetry</i> , 2017 , 129, 947-955 | 4.1 | 50 | | 36 | Temperature Dependent Thermal Conductivity Increase of Aqueous Nanofluid with Single Walled Carbon Nanotube Inclusion. <i>Materials Express</i> , 2012 , 2, 213-223 | 1.3 | 48 | | 35 | Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions. <i>Applied Thermal Engineering</i> , 2017 , 114, 1240-1246 | 5.8 | 41 | | 34 | Carbon atoms in ethanol do not contribute equally to formation of single-walled carbon nanotubes. <i>ACS Nano</i> , 2013 , 7, 3095-103 | 16.7 | 39 | | 33 | Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting. <i>Energy and Buildings</i> , 2019 , 202, 109419 | 7 | 36 | | 32 | Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 113, 423-431 | 4.9 | 35 | Gladiolus dalenii Based Bioinspired Structured Surface via Soft Lithography and Its Application in 31 Water Vapor Condensation and Fog Harvesting. ACS Sustainable Chemistry and Engineering, 2018, 6, 698° - 6993° Fatigue behaviour and fracture mechanism of cryogenically treated En 353 steel. Materials & Design 30 35 , **2009**, 30, 2955-2962 Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with 32 29 3 graphene nanoplatelets. Experimental Thermal and Fluid Science, 2017, 80, 67-76 Enhanced heat transport behavior of micro channel heat sink with graphene based nanofluids. 28 5.8 27 International Communications in Heat and Mass Transfer, 2020, 117, 104716 Effective thermal conductivity and rheological characteristics of ethylene glycol-based nanofluids with single-walled carbon nanohorn inclusions. Fullerenes Nanotubes and Carbon Nanostructures, 1.8 26 27 2017, 25, 86-93 Solidification of Graphene-Assisted Phase Change Nanocomposites inside a Sphere for Cold 26 26 3.1 Storage Applications. *Energies*, **2019**, 12, 3473 Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented 5.8 26 25 latent heat thermal energy storage system. Applied Thermal Engineering, 2017, 125, 880-890 Melting of graphene based phase change nanocomposites in vertical latent heat thermal energy 5.8 25 24 storage unit. Applied Thermal Engineering, 2016, 107, 101-113 Performance improvement in concentrated photovoltaics using nano-enhanced phase change 23 7.9 23 material with graphene nanoplatelets. Energy, 2020, 208, 118408 Constrained melting of graphene-based phase change nanocomposites inside a sphere. Journal of 4.1 Thermal Analysis and Calorimetry, 2020, 139, 941-952 Evaporation kinetics of pure water drops: Thermal patterns, Marangoni flow, and interfacial 21 2.4 21 temperature difference. Physical Review E, 2018, 98, Transient performance of a Peltier super cooler under varied electric pulse conditions with phase 20 10.6 20 change material. Energy Conversion and Management, 2019, 198, 111822 Thermophysical properties of ethylene glycol-water mixture containing silver nanoparticles. 1.6 19 20 Journal of Mechanical Science and Technology, 2016, 30, 1271-1279 Thermal conductivity reduction of crystalline silicon by high-pressure torsion. Nanoscale Research 18 18 Letters, 2014, 9, 326 Novel technique for improving the water adsorption isotherms of metal-organic frameworks for 18 17 2.7 performance enhancement of adsorption driven chillers. Inorganica Chimica Acta, 2020, 501, 119313 On surface energy and acidBase properties of highly porous parent and surface treated activated 16 carbons using inverse gas chromatography. Journal of Industrial and Engineering Chemistry, 2019, 6.3 18 69, 432-443 Enhanced figure of merit of cement composites with graphene and ZnO nanoinclusions for 15 18 7.9 efficient energy harvesting in buildings. Energy, 2020, 198, 117396 Experimental Investigation of Freezing and Melting Characteristics of Graphene-Based Phase Change Nanocomposite for Cold Thermal Energy Storage Applications. Applied Sciences 2.6 14 17 (Switzerland), 2019, 9, 1099 | 13 | Convective heat transfer characteristics of water thylene glycol mixture with silver nanoparticles. <i>Experimental Thermal and Fluid Science</i> , 2016 , 77, 188-196 | 3 | 17 | |----|---|-----|----| | 12 | Experimental Investigation on Pressure Drop and Heat Transfer Characteristics of Copper Metal Foam Heat Sink. <i>Experimental Heat Transfer</i> , 2010 , 23, 185-195 | 2.4 | 15 | | 11 | Thermoelectric figure of merit enhancement in cement composites with graphene and transition metal oxides. <i>Materials Today Energy</i> , 2020 , 18, 100492 | 7 | 11 | | 10 | Role of Nitrogen Precursor on the Activity Descriptor towards Oxygen Reduction Reaction in Iron-Based Catalysts. <i>ChemistrySelect</i> , 2018 , 3, 6542-6550 | 1.8 | 8 | | 9 | Performance analysis of solar chimney using mathematical and experimental approaches. <i>International Journal of Energy Research</i> , 2018 , 42, 2373-2385 | 4.5 | 7 | | 8 | Performance enhancement of hybrid solar PV/T system with graphene based nanofluids. <i>International Communications in Heat and Mass Transfer</i> , 2022 , 130, 105794 | 5.8 | 6 | | 7 | Experimental performance of a mobile air conditioning unit with small thermal energy storage for idle stop/start vehicles. <i>Journal of Thermal Analysis and Calorimetry</i> ,1 | 4.1 | 6 | | 6 | An approach for quantitative analysis of pore size distribution of silica gel using atomic force microscopy. <i>International Journal of Refrigeration</i> , 2019 , 105, 72-79 | 3.8 | 5 | | 5 | Achieving a Carbon Neutral Future through Advanced Functional Materials and Technologies. <i>Bulletin of the Chemical Society of Japan</i> , 2022 , 95, 73-103 | 5.1 | 3 | | 4 | Experimental analysis of parallel plate and crosscut pin fin heat sinks for electronic cooling applications. <i>Thermal Science</i> , 2010 , 14, 147-156 | 1.2 | 3 | | 3 | Convective heat transfer behaviour of water-ethylene glycol-mixture with silver nanoparticles under laminar flow conditions. <i>Journal of Mechanical Science and Technology</i> , 2018 , 32, 2191-2199 | 1.6 | 3 | | 2 | Heat transport and pressure drop characteristics of ethylene Glycol-based Nano fluid containing silver nanoparticles. <i>IOP Conference Series: Materials Science and Engineering</i> , 2018 , 402, 012005 | 0.4 | 1 | | 1 | Building Energy Harvesting Powered by Solar Thermal Energy. <i>Energy, Environment, and</i> Sustainability 2021 , 177-195 | 0.8 | |