
Shobhakar Dhakal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy, 2009, 37, 4208-4219.	4.2	685
2	Six research priorities for cities and climate change. Nature, 2018, 555, 23-25.	13.7	446
3	GHG emissions from urbanization and opportunities for urban carbon mitigation. Current Opinion in Environmental Sustainability, 2010, 2, 277-283.	3.1	209
4	Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Climate, 2012, 2, 55-67.	2.4	193
5	Planetary Stewardship in an Urbanizing World: Beyond City Limits. Ambio, 2012, 41, 787-794.	2.8	189
6	Locking in positive climate responses in cities. Nature Climate Change, 2018, 8, 174-177.	8.1	170
7	Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries. Energy Policy, 2012, 46, 268-277.	4.2	167
8	Urban infrastructure choices structure climate solutions. Nature Climate Change, 2016, 6, 1054-1056.	8.1	144
9	City transformations in a 1.5 °C warmer world. Nature Climate Change, 2018, 8, 177-181.	8.1	114
10	Energy demand and carbon emissions under different development scenarios for Shanghai, China. Energy Policy, 2010, 38, 4797-4807.	4.2	100
11	Managing catastrophic risks in agriculture: Simultaneous adoption of diversification and precautionary savings. International Journal of Disaster Risk Reduction, 2015, 12, 268-277.	1.8	85
12	Upscaling urban data science for global climate solutions. Global Sustainability, 2019, 2, .	1.6	73
13	Analytical framework to evaluate the level of integration of climate adaptation and mitigation in cities. Climatic Change, 2019, 154, 87-106.	1.7	73
14	A global dataset of CO2 emissions and ancillary data related to emissions for 343 cities. Scientific Data, 2019, 6, 180280.	2.4	65
15	Interactions of the carbon cycle, human activity, and the climate system: a research portfolio. Current Opinion in Environmental Sustainability, 2010, 2, 301-311.	3.1	62
16	Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal. Energy Policy, 2003, 31, 1493-1507.	4.2	60
17	CO 2 emission data for Chinese cities. Resources, Conservation and Recycling, 2017, 126, 198-208.	5.3	60
18	Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data. Applied Energy, 2019, 242, 994-1009.	5.1	60

SHOBHAKAR DHAKAL

#	Article	IF	CITATIONS
19	Physical and non-physical factors driving urban heat island: Case of Bangkok Metropolitan Administration, Thailand. Journal of Environmental Management, 2019, 248, 109285.	3.8	56
20	Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand. Energy Policy, 2016, 91, 189-206.	4.2	51
21	Carbon analytics for net-zero emissions sustainable cities. Nature Sustainability, 2021, 4, 460-463.	11.5	50
22	Source data supported high resolution carbon emissions inventory for urban areas of the Beijing-Tianjin-Hebei region: Spatial patterns, decomposition and policy implications. Journal of Environmental Management, 2018, 206, 786-799.	3.8	46
23	Improvement of urban thermal environment by managing heat discharge sources and surface modification in Tokyo. Energy and Buildings, 2002, 34, 13-23.	3.1	44
24	Time series analysis of land use and land cover changes related to urban heat island intensity: Case of Bangkok Metropolitan Area in Thailand. Journal of Urban Management, 2020, 9, 383-395.	2.3	44
25	Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis. Energy Policy, 2019, 129, 521-531.	4.2	42
26	An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach. Energy Policy, 2020, 137, 111118.	4.2	42
27	The COVIDâ€19 Pandemic Not Only Poses Challenges, but Also Opens Opportunities for Sustainable Transformation. Earth's Future, 2021, 9, e2021EF001996.	2.4	42
28	Sustainable Urban Systems. Journal of Industrial Ecology, 2012, 16, 775-779.	2.8	40
29	Responding to complex societal challenges: A decade of Earth System Science Partnership (ESSP) interdisciplinary research. Current Opinion in Environmental Sustainability, 2012, 4, 147-158.	3.1	39
30	Bridging the research gaps for carbon emissions and their management in cities. Energy Policy, 2010, 38, 4753-4755.	4.2	37
31	An assessment of potential synergies and trade-offs between climate mitigation and adaptation policies of Nepal. Journal of Environmental Management, 2019, 235, 535-545.	3.8	37
32	Energy and economic impacts of the global climate change policy onÂSoutheast Asian countries: A general equilibrium analysis. Energy, 2015, 81, 446-461.	4.5	30
33	Future urban expansion and local climate zone changes in relation to land surface temperature: Case of Bangkok Metropolitan Administration, Thailand. Urban Climate, 2021, 37, 100835.	2.4	28
34	Policy-based Indicator Systems: emerging debates and lessons. Local Environment, 2003, 8, 113-119.	1.1	23
35	Liquid Biofuels Development in Southeast Asian Countries: An Analysis of Market, Policies and Challenges. Waste and Biomass Valorization, 2016, 7, 157-173.	1.8	20
36	Evaluation of groundwater-based irrigation systems using a water–energy–food nexus approach: a case study from Southeast Nepal. Journal of Applied Water Engineering and Research, 2015, 3, 53-66.	1.0	17

SHOBHAKAR DHAKAL

#	Article	IF	CITATIONS
37	Potential and bottlenecks of the carbon market: The case of a developing country, Nepal. Energy Policy, 2010, 38, 3781-3789.	4.2	16
38	Heat discharges from an office building in Tokyo using DOE-2. Energy Conversion and Management, 2004, 45, 1107-1118.	4.4	14
39	Changes in per capita CO2 emissions of six large Japanese cities between 1980 and 2000: An analysis using "The Four System Boundaries―approach. Sustainable Cities and Society, 2020, 52, 101784.	5.1	14
40	Climate Change and Cities: The Making of a Climate Friendly Future. , 2008, , 173-192.		13
41	An analysis on driving factors for CO2 emissions from energy use in Tokyo and Seoul by factor decomposition method Environmental Systems Research, 2002, 30, 295-303.	0.1	12
42	Estimation of heat discharges by residential buildings in Tokyo. Energy Conversion and Management, 2003, 44, 1487-1499.	4.4	12
43	Challenges of Urban and Regional Carbon Management and the Scientific Response. Local Environment, 2007, 12, 549-555.	1.1	12
44	An International Carbon Office to assist policy-based science. Current Opinion in Environmental Sustainability, 2010, 2, 297-300.	3.1	11
45	Cross-border electricity trade for Nepal: a SWOT-AHP analysis of barriers and opportunities based on stakeholders' perception. International Journal of Water Resources Development, 2021, 37, 559-580.	1.2	11
46	Supply and demand of biofuels in the fuel market of Thailand: Two stage least square and three least square approaches. Energy, 2016, 114, 431-443.	4.5	10
47	Impact of Subsidy and Taxation Related to Biofuels Policies on the Economy of Thailand: A Dynamic CGE Modelling Approach. Waste and Biomass Valorization, 2020, 11, 909-929.	1.8	10
48	Meeting Future Energy Needs in the Hindu Kush Himalaya. , 2019, , 167-207.		9
49	An international look at the water-energy nexus. Journal - American Water Works Association, 2012, 104, 93-96.	0.2	7
50	Climate change and urban energy systems. , 0, , 85-112.		6
51	Low-carbon policies in the USA and China: why cities play a critical role. Carbon Management, 2011, 2, 359-362.	1.2	5
52	Water–energy–carbon nexus: a case study of Bangkok. Water Science and Technology: Water Supply, 2015, 15, 889-897.	1.0	5
53	Welcome toCarbon Management. Carbon Management, 2010, 1, 1-3.	1.2	2
54	Household energy requirements in two medium-sized Thai cities with different population densities. Environment and Urbanization, 2017, 29, 267-282.	1.5	2

#	Article	IF	CITATIONS
55	Energy Transformation in Cities. , 0, , 443-490.		2
56	Energy Efficiency Retrofits in Commercial Buildings: An Environmental, Financial, and Technical Analysis of Case Studies in Thailand. Energies, 2021, 14, 2571.	1.6	2
57	Energy and CO ₂ emission reduction potential from investment in energy efficiency building retrofits in Bangkok, Thailand. International Journal of Sustainable Energy, 2022, 41, 164-183.	1.3	1
58	Revealing Intra-Urban Features using Optical and SAR Images. , 2008, , .		0