
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314526/publications.pdf Version: 2024-02-01

FRITS KONING

#	Article	IF	CITATIONS
1	The Intestinal T Cell Response to α-Gliadin in Adult Celiac Disease Is Focused on a Single Deamidated Glutamine Targeted by Tissue Transglutaminase. Journal of Experimental Medicine, 2000, 191, 603-612.	8.5	609
2	Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics, 2012, 64, 455-460.	2.4	442
3	Randomized Feeding Intervention in Infants at High Risk for Celiac Disease. New England Journal of Medicine, 2014, 371, 1304-1315.	27.0	393
4	The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology, 2002, 122, 1729-1737.	1.3	383
5	Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nature Reviews Neurology, 2019, 15, 519-539.	10.1	364
6	Specificity of Tissue Transglutaminase Explains Cereal Toxicity in Celiac Disease. Journal of Experimental Medicine, 2002, 195, 643-649.	8.5	338
7	Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. European Journal of Immunology, 1997, 27, 2426-2435.	2.9	298
8	Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nature Communications, 2017, 8, 1740.	12.8	198
9	Glutenin is involved in the gluten-driven mucosal T cell response. European Journal of Immunology, 1999, 29, 3133-3139.	2.9	184
10	T-cell receptor recognition of HLA-DQ2–gliadin complexes associated with celiac disease. Nature Structural and Molecular Biology, 2014, 21, 480-488.	8.2	177
11	Mass Cytometry of the Human Mucosal Immune System Identifies Tissue- and Disease-Associated Immune Subsets. Immunity, 2016, 44, 1227-1239.	14.3	139
12	Memory CD4+ T cells are generated in the human fetal intestine. Nature Immunology, 2019, 20, 301-312.	14.5	132
13	Intratumoral HPV16-Specific T Cells Constitute a Type l–Oriented Tumor Microenvironment to Improve Survival in HPV16-Driven Oropharyngeal Cancer. Clinical Cancer Research, 2018, 24, 634-647.	7.0	128
14	Update 2020: nomenclature and listing of celiac disease–relevant gluten epitopes recognized by CD4+ T cells. Immunogenetics, 2020, 72, 85-88.	2.4	125
15	Biased T Cell Receptor Usage Directed against Human Leukocyte Antigen DQ8-Restricted Gliadin Peptides Is Associated with Celiac Disease. Immunity, 2012, 37, 611-621.	14.3	121
16	Celiac Disease: Caught Between a Rock and a Hard Place. Gastroenterology, 2005, 129, 1294-1301.	1.3	117
17	Pathomechanisms in celiac disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2005, 19, 373-387.	2.4	116
18	A 40-Marker Panel for High Dimensional Characterization of Cancer Immune Microenvironments by Imaging Mass Cytometry. Frontiers in Immunology, 2019, 10, 2534.	4.8	101

#	Article	IF	CITATIONS
19	High-dimensional cytometric analysis of colorectal cancer reveals novel mediators of antitumour immunity. Gut, 2020, 69, 691-703.	12.1	92
20	T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease. Nature Structural and Molecular Biology, 2020, 27, 49-61.	8.2	91
21	Unique peptide binding characteristics of the disease-associated DQ($(l \pm 1 * 0501, l^21 * 0201)$ vs the non-disease-associated DQ($l \pm 1 * 0201, l^21 * 0202$) molecule. Immunogenetics, 1997, 46, 484-492.	2.4	84
22	Increased systemic and adipose tissue inflammation differentiates obese women with T2DM from obese women with normal glucose tolerance. Metabolism: Clinical and Experimental, 2014, 63, 492-501.	3.4	83
23	Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. Journal of Experimental Medicine, 2018, 215, 1383-1396.	8.5	74
24	Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nature Communications, 2015, 6, 6681.	12.8	66
25	ImaCytE: Visual Exploration of Cellular Micro-Environments for Imaging Mass Cytometry Data. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 98-110.	4.4	61
26	Human dendritic cells shed a functional, soluble form of the mannose receptor. International Immunology, 1999, 11, 1775-1780.	4.0	58
27	Celiac disease: quantity matters. Seminars in Immunopathology, 2012, 34, 541-549.	6.1	56
28	CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E980-E989.	7.1	56
29	Predicting Cell Populations in Single Cell Mass Cytometry Data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 769-781.	1.5	54
30	Gluten-Specific T Cells Cross-React between HLA-DQ8 and the HLA-DQ2α/DQ8β Transdimer. Journal of Immunology, 2011, 187, 5123-5129.	0.8	52
31	Get into the groove! Targeting antigens to MHC class II. Immunological Reviews, 1999, 172, 87-96.	6.0	51
32	Determinants of Gliadin-Specific T Cell Selection in Celiac Disease. Journal of Immunology, 2015, 194, 6112-6122.	0.8	50
33	Human epidermal Langerhans cells lack functional mannose receptors and a fully developed endosomal/lysosomal compartment for loading of HLA class II molecules. European Journal of Immunology, 1999, 29, 571-580.	2.9	49
34	T-cell recognition of HLA-DQ2-bound gluten peptides can be influenced by an N-terminal proline at p-1. Immunogenetics, 2005, 57, 8-15.	2.4	49
35	Coeliac disease and gluten-related disorders in childhood. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 527-536.	17.8	49
36	Diverse T Cell Receptor Gene Usage in HLA-DQ8-Associated Celiac Disease Converges into a Consensus Binding Solution. Structure, 2016, 24, 1643-1657.	3.3	49

#	Article	IF	CITATIONS
37	Coeliac disease and rheumatoid arthritis: similar mechanisms, different antigens. Nature Reviews Rheumatology, 2015, 11, 450-461.	8.0	48
38	PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors. , 2019, 7, 217.		47
39	The Contribution of Cytomegalovirus Infection to Immune Senescence Is Set by the Infectious Dose. Frontiers in Immunology, 2018, 8, 1953.	4.8	46
40	Unraveling the Complexity of the Cancer Microenvironment With Multidimensional Genomic and Cytometric Technologies. Frontiers in Oncology, 2020, 10, 1254.	2.8	45
41	Gluten: a two-edged sword. Immunopathogenesis of celiac disease. Seminars in Immunopathology, 2005, 27, 217-232.	4.0	42
42	Ineffective Degradation of Immunogenic Gluten Epitopes by Currently Available Digestive Enzyme Supplements. PLoS ONE, 2015, 10, e0128065.	2.5	39
43	The molecular basis of celiac disease. Journal of Molecular Recognition, 2003, 16, 333-336.	2.1	38
44	Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens. Frontiers in Immunology, 2018, 9, 2902.	4.8	38
45	Weight loss induced by very low calorie diet is associated with a more beneficial systemic inflammatory profile than by Roux-en-Y gastric bypass. Metabolism: Clinical and Experimental, 2016, 65, 1614-1620.	3.4	36
46	The composition and differentiation potential of the duodenal intraepithelial innate lymphocyte compartment is altered in coeliac disease. Gut, 2016, 65, 1269-1278.	12.1	34
47	Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Frontiers in Nutrition, 2020, 7, 29.	3.7	34
48	Influence of dietary components on Aspergillus niger prolyl endoprotease mediated gluten degradation. Food Chemistry, 2015, 174, 440-445.	8.2	33
49	Helminth infections drive heterogeneity in human type 2 and regulatory cells. Science Translational Medicine, 2020, 12, .	12.4	33
50	Local Communication Among Mucosal Immune Cells in Patients With Celiac Disease. Gastroenterology, 2015, 148, 1187-1194.	1.3	29
51	Allergenicity Assessment of Novel Food Proteins: What Should Be Improved?. Trends in Biotechnology, 2021, 39, 4-8.	9.3	29
52	Abrogation of Immunogenic Properties of Gliadin Peptides through Transamidation by Microbial Transglutaminase Is Acyl-Acceptor Dependent. Journal of Agricultural and Food Chemistry, 2017, 65, 7542-7552.	5.2	24
53	A 34-Marker Panel for Imaging Mass Cytometric Analysis of Human Snap-Frozen Tissue. Frontiers in Immunology, 2020, 11, 1466.	4.8	24
54	Systems analysis and controlled malaria infection in Europeans and Africans elucidate naturally acquired immunity. Nature Immunology, 2021, 22, 654-665.	14.5	24

#	Article	IF	CITATIONS
55	The Probiotic Mixture VSL#3 Has Differential Effects on Intestinal Immune Parameters in Healthy Female BALB/c and C57BL/6 Mice. Journal of Nutrition, 2015, 145, 1354-1361.	2.9	23
56	Safety Assessment of Immune-Mediated Adverse Reactions to Novel Food Proteins. Trends in Biotechnology, 2019, 37, 796-800.	9.3	20
57	Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFNÎ ³ Signaling in Celiac Disease. Frontiers in Genetics, 2020, 11, 562434.	2.3	20
58	Visualizing Dynamic Changes at the Maternal-Fetal Interface Throughout Human Pregnancy by Mass Cytometry. Frontiers in Immunology, 2020, 11, 571300.	4.8	19
59	An Arthritisâ€6uppressive and Treg Cell–Inducing CD4+ T Cell Epitope Is Functional in the Context of HLAâ€Restricted T Cell Responses. Arthritis and Rheumatology, 2016, 68, 639-647.	5.6	18
60	The probiotic mixture VSL#3 mediates both pro- and anti-inflammatory responses in bone marrow-derived dendritic cells from C57BL/6 and BALB/c mice. British Journal of Nutrition, 2014, 112, 1088-1097.	2.3	16
61	Early-Life Compartmentalization of Immune Cells in Human Fetal Tissues Revealed by High-Dimensional Mass Cytometry. Frontiers in Immunology, 2019, 10, 1932.	4.8	15
62	Development and in-house validation of a competitive ELISA for the quantitative detection of gluten in food. Food Control, 2017, 80, 401-410.	5.5	14
63	Adverse Effects of Wheat Gluten. Annals of Nutrition and Metabolism, 2015, 67, 7-14.	1.9	13
64	Altered peptide ligands and wild-type peptide induce indistinguishable responses of a human ThO clone. European Journal of Immunology, 1998, 28, 2801-2808.	2.9	12
65	Adenoviral vaccines promote protective tissue-resident memory T cell populations against cancer. , 2020, 8, e001133.		12
66	A Specialist Macaque MHC Class I Molecule with HLA-B*27–like Peptide-Binding Characteristics. Journal of Immunology, 2017, 199, 3679-3690.	0.8	11
67	Lack of relationship of AT1001 to zonulin and prehaptoglobin-2: clinical implications. Gut, 2021, 70, 2211-2212.	12.1	11
68	CD4-independent T cells impair TCR triggering of CD4-dependent T cells: a putative mechanism for T cell affinity maturation. European Journal of Immunology, 2001, 31, 646-652.	2.9	10
69	<scp>F</scp> c <scp>R</scp> î³â€chain deficiency reduces the development of dietâ€induced obesity. Obesity, 2015, 23, 2435-2444.	3.0	10
70	Ranking of immunodominant epitopes in celiac disease: Identification of reliable parameters for the safety assessment of innovative food proteins. Food and Chemical Toxicology, 2021, 157, 112584.	3.6	9
71	Dendritic cells promote expansion and survival of aberrant TCR-negative intraepithelial lymphocyte lines from refractory celiac disease type II patients. Molecular Immunology, 2014, 58, 10-16.	2.2	7
72	Memory CD8+ TÂcell heterogeneity is primarily driven by pathogen-specific cues and additionally shaped by the tissue environment. IScience, 2021, 24, 101954.	4.1	7

#	Article	IF	CITATIONS
73	Identification of a Disease-Associated Network of Intestinal Immune Cells in Treatment-Naive Inflammatory Bowel Disease. Frontiers in Immunology, 0, 13, .	4.8	7
74	Potential impact of celiac disease genetic risk factors on T cell receptor signaling in gluten-specific CD4+ T cells. Scientific Reports, 2021, 11, 9252.	3.3	6
75	Celiac Disease: Sandwiched Between Innate and Adaptive Immune Responses Induced by Gluten. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46, E8-9.	1.8	5
76	Statement of the Prolamin Working Group on the Determination of Gluten in Fermented Foods Containing Partially Hydrolyzed Gluten. Frontiers in Nutrition, 2020, 7, 626712.	3.7	5
77	Recent insight in the pathophysiology of coeliac disease: relevance to rheumatoid arthritis. Clinical and Experimental Rheumatology, 2015, 33, S8-10.	0.8	5
78	Single-Cell Analysis of Refractory Celiac Disease Demonstrates Inter- and Intra-Patient Aberrant Cell Heterogeneity. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	4.5	3
79	The HLA A03 Supertype and Several Pan Species Major Histocompatibility Complex Class I A Allotypes Share a Preference for Binding Positively Charged Residues in the F Pocket: Implications for Controlling Retroviral Infections. Journal of Virology, 2020, 94, .	3.4	2
80	Isolation and Cloning of Gluten-Specific T Cells in Celiac Disease. Methods in Molecular Biology, 2015, 1326, 53-59.	0.9	2
81	Mass Cytometric Analysis of Early-Stage Mycosis Fungoides. Cells, 2022, 11, 1062.	4.1	1
82	A Tertiary Twist to the Transglutaminase Tale. PLoS Biology, 2007, 5, e337.	5.6	0
83	PS13 - 66. The type 1 diabetes associated HLA-DQ8-transdimer accommodates a unique islet peptide repertoire. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 135-136.	0.0	0
84	PS19 - 88. Mast cell deficient mice on a high fat diet have altered immune cell infiltration in their adipose tissue. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 162-162.	0.0	0
85	Preface. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2015, 29, 363.	2.4	Ο