

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined effects of nanosized polystyrene and erythromycin on bacterial growth and resistance mutations in Escherichia coli. Journal of Hazardous Materials, 2022, 422, 126858.	6.5	37
2	Target and Suspect Screening of Urinary Biomarkers for Currentâ€use Pesticides: Application of a Simple Extraction Method. Environmental Toxicology and Chemistry, 2022, 41, 73-80.	2.2	6
3	Point or non-point source: Toxicity evaluation using m-POCIS and zebrafish embryos in municipal sewage treatment plants and urban waterways. Environmental Pollution, 2022, 292, 118307.	3.7	7
4	In-situ biological effects, bioaccumulation, and multi-media distribution of organic contaminants in a shallow lake. Journal of Hazardous Materials, 2022, 427, 128143.	6.5	3
5	Estimated material metabolism and life cycle greenhouse gas emission of major plastics in China: A commercial sector-scale perspective. Resources, Conservation and Recycling, 2022, 180, 106161.	5.3	24
6	Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies. Journal of Cleaner Production, 2022, 339, 130697.	4.6	20
7	Legacy and Emerging Per- and Polyfluoroalkyl Substances Behave Distinctly in Spatial Distribution and Multimedia Partitioning: A Case Study in the Pearl River, China. Environmental Science & Technology, 2022, 56, 3492-3502.	4.6	22
8	New insights into the photo-degraded polystyrene microplastic: Effect on the release of volatile organic compounds. Journal of Hazardous Materials, 2022, 431, 128523.	6.5	38
9	Deriving freshwater guideline values for neonicotinoid insecticides: Implications for water quality guidelines and ecological risk assessment. Science of the Total Environment, 2022, 828, 154569.	3.9	14
10	Reduced concentrations and toxicity of sediment-associated pesticides from vegetable planting field to surrounding waterways: Impacts of chemical properties and intrinsic toxicity. Journal of Hazardous Materials, 2022, 436, 129292.	6.5	9
11	Investigations On the Fish Acute Toxicity of Fragrance Ingredients Involving Chinese Fish Species and Zebrafish Embryos. Environmental Toxicology and Chemistry, 2022, 41, 2305-2317.	2.2	2
12	Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. Environmental Pollution, 2022, 307, 119603.	3.7	10
13	Bioassay-based identification and removal of target and suspect toxicants in municipal wastewater: Impacts of chemical properties and transformation. Journal of Hazardous Materials, 2022, 437, 129426.	6.5	4
14	Spatial distribution of benthic toxicity and sediment-bound metals and arsenic in Guangzhou urban waterways: Influence of land use. Journal of Hazardous Materials, 2022, 439, 129634.	6.5	6
15	Using homing pigeons to monitor atmospheric organic pollutants in a city heavily involving in coal mining industry. Chemosphere, 2022, 307, 135679.	4.2	7
16	High Tolerance and Delayed Responses of <i>Daphnia magna</i> to Neonicotinoid Insecticide Imidacloprid: Toxicokinetic and Toxicodynamic Modeling. Environmental Science & Technology, 2021, 55, 458-467.	4.6	26
17	Predicting rifampicin resistance mutations in bacterial RNA polymerase subunit beta based on majority consensus. BMC Bioinformatics, 2021, 22, 210.	1.2	5
18	Short-term personal PM2.5 exposure and change in DNA methylation of imprinted genes: Panel study of healthy young adults in Guangzhou city, China. Environmental Pollution, 2021, 275, 116601.	3.7	16

#	Article	IF	CITATIONS
19	Joint toxicity of imidacloprid and azoxystrobin to Chironomus dilutus at organism, cell, and gene levels. Aquatic Toxicology, 2021, 233, 105783.	1.9	14
20	The neonicotinoid alternative sulfoxaflor causes chronic toxicity and impairs mitochondrial energy production in Chironomus kiinensis. Aquatic Toxicology, 2021, 235, 105822.	1.9	9
21	Signposts for Aquatic Toxicity Evaluation in China: Text Mining using Event-Driven Taxonomy within and among Regions. Environmental Science & Technology, 2021, 55, 8977-8986.	4.6	7
22	Tracing neonicotinoid insecticides and their transformation products from paddy field to receiving waters using polar organic chemical integrative samplers. Journal of Hazardous Materials, 2021, 413, 125421.	6.5	35
23	Species and Lifeâ€Stage Sensitivity of Chinese Rare Minnow (<i>Gobiocypris rarus</i>) to Chemical Exposure: A Critical Review. Environmental Toxicology and Chemistry, 2021, 40, 2680-2692.	2.2	8
24	The feasibility of the zebrafish embryo as a promising alternative for acute toxicity test using various fish species: A critical review. Science of the Total Environment, 2021, 787, 147705.	3.9	18
25	Life stage and endpoint sensitivity differences of fathead minnow (Pimephales promelas) to chemicals with various modes of action. Environmental Pollution, 2021, 290, 117995.	3.7	8
26	Joint effects of antibiotics and quorum sensing inhibitors on resistance development in bacteria. Environmental Sciences: Processes and Impacts, 2021, 23, 995-1005.	1.7	9
27	Identification of CYP Isozymes Involved in Enantioselective Metabolism of Fipronil in Fish Liver: In Vitro Metabolic Kinetics and Molecular Modeling. Environmental Toxicology and Chemistry, 2021, , .	2.2	0
28	Identifying bioaccessible suspect toxicants in sediment using adverse outcome pathway directed analysis. Journal of Hazardous Materials, 2020, 389, 121853.	6.5	8
29	Development of the transcriptome for a sediment ecotoxicological model species, Chironomus dilutus. Chemosphere, 2020, 244, 125541.	4.2	13
30	Microplastic Impacts on Microalgae Growth: Effects of Size and Humic Acid. Environmental Science & Technology, 2020, 54, 1782-1789.	4.6	207
31	Gut Microbial Profiles in <i>Nereis succinea</i> and Their Contribution to the Degradation of Organic Pollutants. Environmental Science & amp; Technology, 2020, 54, 6235-6243.	4.6	11
32	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. Environmental Toxicology and Chemistry, 2020, 39, 1485-1505.	2.2	38
33	One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life. Environmental Pollution, 2020, 262, 114262.	3.7	12
34	Simultaneous analysis of currentâ€use pesticides and their transformation products in water using mixtureâ€sorbent solid phase extraction and highâ€performance liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 2020, 43, 2409-2418.	1.3	11
35	A new configuration of polar organic chemical integrative sampler with nylon membranes to monitor emerging organophosphate ester contaminants in urban surface water. Ecotoxicology and Environmental Safety, 2020, 202, 110891.	2.9	8
36	Measuring bioconcentration factors of sediment-associated fipronil in Lumbriculus variegatus using passive sampling techniques. Journal of Hazardous Materials, 2020, 393, 122420.	6.5	13

#	Article	IF	CITATIONS
37	Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli. Environmental Pollution, 2020, 262, 114275.	3.7	41
38	Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect, Chironomus dilutus. Environmental Pollution, 2020, 260, 114011.	3.7	34
39	Distribution and ecological risk of neonicotinoid insecticides in sediment in South China: Impact of regional characteristics and chemical properties. Science of the Total Environment, 2020, 714, 136878.	3.9	39
40	Retrospective Risk Assessment of Chemical Mixtures in the Big Data Era: An Alternative Classification Strategy to Integrate Chemical and Toxicological Data. Environmental Science & Technology, 2020, 54, 5925-5927.	4.6	20
41	Transcriptomic analysis reveals common pathways and biomarkers associated with oxidative damage caused by mitochondrial toxicants in Chironomus dilutus. Chemosphere, 2020, 254, 126746.	4.2	2
42	Toxicology Advances for 21st Century Chemical Pollution. One Earth, 2020, 2, 312-316.	3.6	37
43	Full–Life Cycle Toxicity Assessment of Sedimentâ€Bound DDT and Its Degradation Products on Chironomus dilutus. Environmental Toxicology and Chemistry, 2019, 38, 2698-2707.	2.2	9
44	Enantioselective degradation and bioaccumulation of sediment-associated fipronil in Lumbriculus variegatus: Toxicokinetic analysis. Science of the Total Environment, 2019, 672, 335-341.	3.9	16
45	Coastal ecosystem in East Asia: Pollution and management. Environmental Pollution, 2019, 251, 990-992.	3.7	0
46	Comparative mammalian hazards of neonicotinoid insecticides among exposure durations. Environment International, 2019, 125, 9-24.	4.8	41
47	Developmental Toxicity of a Neonicotinoid Insecticide, Acetamiprid to Zebrafish Embryos. Journal of Agricultural and Food Chemistry, 2019, 67, 2429-2436.	2.4	78
48	Occurrence and risk of neonicotinoid insecticides in surface water in a rapidly developing region: Application of polar organic chemical integrative samplers. Science of the Total Environment, 2019, 648, 1305-1312.	3.9	61
49	Identifying Organic Toxicants in Sediment Using Effect-Directed Analysis: A Combination of Bioaccessibility-Based Extraction and High-Throughput Midge Toxicity Testing. Environmental Science & Technology, 2019, 53, 996-1003.	4.6	23
50	Quantifying nanoplastic-bound chemicals accumulated in <i>Daphnia magna</i> with a passive dosing method. Environmental Science: Nano, 2018, 5, 776-781.	2.2	35
51	Effects of lead, cadmium, arsenic, and mercury co-exposure on children's intelligence quotient in an industrialized area of southern China. Environmental Pollution, 2018, 235, 47-54.	3.7	78
52	Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environmental Pollution, 2018, 235, 710-719.	3.7	211
53	Improvements and cost-effective measures to the automated intermittent water renewal system for toxicity testing with sediments. Ecotoxicology and Environmental Safety, 2018, 151, 62-67.	2.9	9
54	Synthesis and application of a novel solidâ€phase extraction adsorbent for multiresidue analysis of insecticides in water. Journal of Separation Science, 2018, 41, 525-533.	1.3	14

#	Article	IF	CITATIONS
55	Diagnosis of complex mixture toxicity in sediments: Application of toxicity identification evaluation (TIE) and effect-directed analysis (EDA). Environmental Pollution, 2018, 237, 944-954.	3.7	38
56	Multi-compartmental toxicokinetic modeling of fipronil in tilapia: Accumulation, biotransformation and elimination. Journal of Hazardous Materials, 2018, 360, 420-427.	6.5	28
57	Particle-scale understanding of cypermethrin in sediment: Desorption, bioavailability, and bioaccumulation in benthic invertebrate Lumbriculus variegatus. Science of the Total Environment, 2018, 642, 638-645.	3.9	18
58	Application of Box–Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances. Talanta, 2017, 170, 392-398.	2.9	48
59	Determining equilibrium partition coefficients between lipid/protein and polydimethylsiloxane for highly hydrophobic organic contaminants using preloaded disks. Science of the Total Environment, 2017, 598, 385-392.	3.9	10
60	Legacy and Current-Use Insecticides in Agricultural Sediments from South China: Impact of Application Pattern on Occurrence and Risk. Journal of Agricultural and Food Chemistry, 2017, 65, 4247-4254.	2.4	16
61	Effect-Directed Analysis of Toxicants in Sediment with Combined Passive Dosing and in Vivo Toxicity Testing. Environmental Science & Technology, 2017, 51, 6414-6421.	4.6	29
62	Bioaccumulation of sediment-bound dichlorodiphenyltrichloroethane and heavy metals in benthic polychaete, Nereis succinea from a typical mariculture zone in South China. Marine Pollution Bulletin, 2017, 124, 1040-1047.	2.3	7
63	Aquatic Global Passive Sampling (AQUA-GAPS) Revisited: First Steps toward a Network of Networks for Monitoring Organic Contaminants in the Aquatic Environment. Environmental Science & Technology, 2017, 51, 1060-1067.	4.6	61
64	Improving the accuracy of effect-directed analysis: the role of bioavailability. Environmental Sciences: Processes and Impacts, 2017, 19, 1484-1498.	1.7	4
65	Contribution of pyrethroids in large urban rivers to sediment toxicity assessed with benthic invertebrates <i>Chironomus dilutus</i> : A case study in South China. Environmental Toxicology and Chemistry, 2017, 36, 3367-3375.	2.2	23
66	Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials, 2017, 324, 258-271.	6.5	221
67	Homing pigeons as a biomonitor for atmospheric PAHs and PCBs in Guangzhou, a megacity in South China. Marine Pollution Bulletin, 2017, 124, 1048-1054.	2.3	8
68	Performance Evaluation and Adaptability Research of Flowing Gel System Prepared with Re-injected Waste Water. IOP Conference Series: Earth and Environmental Science, 2017, 100, 012015.	0.2	0
69	Use of homing pigeons as biomonitors of atmospheric metal concentrations in Beijing and Guangzhou, China. Ecotoxicology, 2016, 25, 439-446.	1.1	14
70	Adsorption behavior of carbon dioxide and methane in bituminous coal: A molecular simulation study. Chinese Journal of Chemical Engineering, 2016, 24, 1275-1282.	1.7	56
71	The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environmental Pollution, 2016, 215, 195-202.	3.7	110
72	Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression. Environmental Pollution, 2016, 218, 1005-1013.	3.7	21

#	Article	IF	CITATIONS
73	Insecticides in sediment cores from a rural and a suburban area in South China: A reflection of shift in application patterns. Science of the Total Environment, 2016, 568, 11-18.	3.9	23
74	LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group. Toxicology in Vitro, 2016, 34, 35-44.	1.1	18
75	Pyrethroids in indoor air during application of various mosquito repellents: Occurrence, dissipation and potential exposure risk. Chemosphere, 2016, 144, 2427-2435.	4.2	37
76	Identifying the causes of sedimentâ€associated toxicity in urban waterways in South China: Incorporating bioavailabillityâ€based measurements into wholeâ€sediment toxicity identification evaluation. Environmental Toxicology and Chemistry, 2015, 34, 1744-1750.	2.2	30
77	Assessment of Sediment Toxicity with SPME-Based Approaches. Comprehensive Analytical Chemistry, 2015, 67, 161-194.	0.7	1
78	Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus. Archives of Environmental Contamination and Toxicology, 2015, 69, 461-469.	2.1	15
79	Occurrence and Toxicity of Sediment-Associated Contaminants in Guangzhou College City and Its Adjacent Areas: The Relationship to Urbanization. Archives of Environmental Contamination and Toxicology, 2015, 68, 124-131.	2.1	13
80	Application of species sensitivity distribution in aquatic probabilistic ecological risk assessment of cypermethrin: A case study in an urban stream in South China. Environmental Toxicology and Chemistry, 2015, 34, 640-648.	2.2	22
81	Integrated sediment quality assessment through biomarker responses and bioavailability measurements: Application in Tai Lake, China. Ecotoxicology and Environmental Safety, 2015, 119, 148-154.	2.9	19
82	Biotransformation of dichlorodiphenyltrichloroethane in the benthic polychaete, <i>Nereis succinea</i> : Quantitative estimation by analyzing the partitioning of chemicals between gut fluid and lipid. Environmental Toxicology and Chemistry, 2015, 34, 360-368.	2.2	6
83	Joint toxicity of sediment-associated DDT and copper to a polychaete, Nereis succinea. Ecotoxicology, 2015, 24, 424-432.	1.1	6
84	Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: The role of bioavailability and enzymatic activities. Environmental Pollution, 2015, 207, 138-144.	3.7	15
85	Research and application of the gel formulation prepared with oilfield waste water. , 2015, , 925-928.		2
86	Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integrated Environmental Assessment and Management, 2014, 10, 197-209.	1.6	153
87	Mitigating pesticide pollution in China requires law enforcement, farmer training, and technological innovation. Environmental Toxicology and Chemistry, 2014, 33, 963-971.	2.2	87
88	Chronic Toxicity Thresholds for Sediment-Associated Benzo[a]pyrene in the Midge (Chironomus) Tj ETQq0 0 C) rgBT_/Over 2.1	lock 10 Tf 50

89	Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implications for a regional risk assessment. Environmental Pollution, 2014, 190, 19-26.	3.7	42
90	Bioaccumulation of Highly Hydrophobic Organohalogen Flame Retardants from Sediments: Application of Toxicokinetics and Passive Sampling Techniques. Environmental Science & Technology, 2014, 48, 6957-6964.	4.6	19

#	Article	IF	CITATIONS
91	Occurrence, seasonal variation and inhalation exposure of atmospheric organophosphate and pyrethroid pesticides in an urban community in South China. Chemosphere, 2014, 95, 363-369.	4.2	87
92	Synthesis and characterization of an inorganic/organic-modified bentonite and its application in methyl orange water treatment. Desalination and Water Treatment, 2014, 52, 7660-7672.	1.0	8
93	Application of Box-Behnken Experimental Design to Optimize the Extraction of Insecticidal Cry1Ac from Soil. Journal of Agricultural and Food Chemistry, 2013, 61, 1464-1470.	2.4	24
94	Dissipation of Insecticidal Cry1Ac Protein and Its Toxicity to Nontarget Aquatic Organisms. Journal of Agricultural and Food Chemistry, 2013, 61, 10864-10871.	2.4	19
95	Addition of contaminant bioavailability and species susceptibility to a sediment toxicity assessment: Application in an urban stream in China. Environmental Pollution, 2013, 178, 135-141.	3.7	45
96	SEDIMENTâ€ASSOCIATED PESTICIDES IN AN URBAN STREAM IN GUANGZHOU, CHINA: IMPLICATION OF A SHIFT IN PESTICIDE USE PATTERNS. Environmental Toxicology and Chemistry, 2013, 32, 1040-1047.	2.2	62
97	Assessing bioavailability and toxicity of permethrin and DDT in sediment using matrix solid phase microextraction. Ecotoxicology, 2013, 22, 109-117.	1.1	23
98	Bioavailabilityâ€based chronic toxicity measurements of permethrin to <i>Chironomus dilutus</i> . Environmental Toxicology and Chemistry, 2013, 32, 1403-1411.	2.2	27
99	Bioaccumulation kinetics of polybrominated diphenyl ethers and decabromodiphenyl ethane from field ollected sediment in the oligochaete, <i>Lumbriculus variegatus</i> . Environmental Toxicology and Chemistry, 2013, 32, 2711-2718.	2.2	26
100	Influence of bioturbation on bioavailability and toxicity of PAHs in sediment from an electronic waste recycling site in South China. Ecotoxicology and Environmental Safety, 2012, 84, 227-233.	2.9	19
101	Use of solid phase microextraction to estimate toxicity: Relating fiber concentrations to toxicity—part I. Environmental Toxicology and Chemistry, 2012, 31, 2159-2167.	2.2	35
102	Use of solid phase microextraction to estimate toxicity: Relating fiber concentrations to body residues—part II. Environmental Toxicology and Chemistry, 2012, 31, 2168-2174.	2.2	16
103	Application of a Tenax model to assess bioavailability of PCBs in field sediments. Environmental Toxicology and Chemistry, 2012, 31, 2210-2216.	2.2	23
104	Predicting the Toxicity of Permethrin to Daphnia magna in Water Using SPME Fibers. Archives of Environmental Contamination and Toxicology, 2012, 62, 438-444.	2.1	7
105	Distribution and toxicity of current-use insecticides in sediment of a lake receiving waters from areas in transition to urbanization. Environmental Pollution, 2012, 161, 128-133.	3.7	37
106	Toxicity of sediment-associated unresolved complex mixture and its impact on bioavailability of polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2012, 203-204, 169-175.	6.5	28
107	Identifying the Causes of Sediment-Associated Toxicity in Urban Waterways of the Pearl River Delta, China. Environmental Science & Technology, 2011, 45, 1812-1819.	4.6	66
108	Short-range transport of contaminants released from e-waste recycling site in South China. Journal of Environmental Monitoring, 2011, 13, 836.	2.1	25

#	Article	IF	CITATIONS
109	Balance between economic growth and environmental protection: sustainability through better science. Journal of Environmental Monitoring, 2011, 13, 787.	2.1	4
110	Chemical techniques for assessing bioavailability of sediment-associated contaminants: SPME versus Tenax extraction. Journal of Environmental Monitoring, 2011, 13, 792.	2.1	83
111	Analysis of persistent halogenated hydrocarbons in fish feeds containing fish oil and other alternative lipid sources. Talanta, 2011, 85, 1291-1297.	2.9	3
112	Permethrin modulates cholinergic mini-synaptic currents by partially blocking the calcium channel. Toxicology Letters, 2011, 201, 258-263.	0.4	16
113	Occurrence and distribution of sediment-associated insecticides in urban waterways in the Pearl River Delta, China. Chemosphere, 2011, 82, 1373-1379.	4.2	84
114	Bioavailability of Hydrophobic Organic Contaminants in Sediment with Different Particle-Size Distributions. Archives of Environmental Contamination and Toxicology, 2011, 61, 74-82.	2.1	28
115	Toxicity of Sediment-Associated Pesticides to Chironomus dilutus and Hyalella azteca. Archives of Environmental Contamination and Toxicology, 2011, 61, 83-92.	2.1	43
116	Input pathways of organochlorine pesticides to typical freshwater cultured fish ponds of South China: Hints for pollution control. Environmental Toxicology and Chemistry, 2011, 30, 1272-1277.	2.2	9
117	Sorption of PBDE in lowâ€density polyethylene film: Implications for bioavailability of BDEâ€209. Environmental Toxicology and Chemistry, 2011, 30, 1731-1738.	2.2	50
118	Joint toxicity of a pyrethroid insecticide, cypermethrin, and a heavy metal, lead, to the benthic invertebrate <i>Chironomus dilutus</i> . Environmental Toxicology and Chemistry, 2011, 30, 2838-2845.	2.2	26
119	Sediment Matrix Effects in Analysis of Pyrethroid Insecticides Using Gas Chromatography–Mass Spectrometry. Archives of Environmental Contamination and Toxicology, 2010, 59, 382-392.	2.1	21
120	Identifying the causes of sedimentâ€associated contamination in the Illinois River (USA) using a wholeâ€sediment toxicity identification evaluation. Environmental Toxicology and Chemistry, 2010, 29, 158-167.	2.2	27
121	Influence of black carbon and chemical planarity on bioavailability of sedimentâ€associated contaminants. Environmental Toxicology and Chemistry, 2010, 29, 1976-1983.	2.2	25
122	Comparative analysis of whole sediment and porewater toxicity identification evaluation techniques for ammonia and non-polar organic contaminants. Chemosphere, 2010, 78, 814-821.	4.2	11
123	Determination of pyrethroid insecticides in sediment by gas chromatography—lon trap tandem mass spectrometry. Talanta, 2010, 81, 136-141.	2.9	25
124	Analysis of sediment-associated insecticides using ultrasound assisted microwave extraction and gas chromatography–mass spectrometry. Talanta, 2010, 83, 171-177.	2.9	48
125	Analysis of Pyrethroid Insecticides in Chironomus dilutus Using Matrix Solid Phase Dispersion Extraction. Bulletin of Environmental Contamination and Toxicology, 2009, 83, 388-392.	1.3	4
126	Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: III. Temperature manipulation. Environmental Toxicology and Chemistry, 2009, 28, 173-180.	2.2	90

#	Article	IF	CITATIONS
127	Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: Toxicokinetic confirmation. Environmental Toxicology and Chemistry, 2009, 28, 1051-1058.	2.2	143
128	Bioavailability and biotransformation of sediment-associated pyrethroid insecticides in Lumbriculus variegatus. Chemosphere, 2009, 75, 1477-1482.	4.2	50
129	Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations. Chemosphere, 2009, 77, 22-28.	4.2	51
130	Comparison of cleanup methods for fipronil and its degradation products in sediment extracts. Talanta, 2009, 78, 1408-1413.	2.9	15
131	Chemical availability and sediment toxicity of pyrethroid insecticides to <i>Hyalella azteca</i> : Application to field sediment with unexpectedly low toxicity. Environmental Toxicology and Chemistry, 2008, 27, 2124-2130.	2.2	65
132	Patterns of Pyrethroid Contamination and Toxicity in Agricultural and Urban Stream Segments. ACS Symposium Series, 2008, , 355-369.	0.5	14
133	Bioavailability of PCBs from field-collected sediments: Application of Tenax extraction and matrix-SPME techniques. Chemosphere, 2008, 71, 337-344.	4.2	86
134	Quantification of Pyrethroid Insecticides at Sub-ppb Levels in Sediment Using Matrix-Dispersive Accelerated Solvent Extraction with Tandem SPE Cleanup. ACS Symposium Series, 2008, , 87-113.	0.5	20
135	Sediment Toxicity in Agricultural Areas of California and the Role of Hydrophobic Pesticides. ACS Symposium Series, 2008, , 26-54.	0.5	14
136	Desorption of Hydrophobic Compounds from Laboratory-Spiked Sediments Measured by Tenax Absorbent and Matrix Solid-Phase Microextraction. Environmental Science & Technology, 2007, 41, 5672-5678.	4.6	80
137	Predicting Bioavailability of Sediment-Associated Organic Contaminants forDiporeiaspp. and Oligochaetes. Environmental Science & amp; Technology, 2007, 41, 6442-6447.	4.6	60
138	A solution for isomerization of pyrethroid insecticides in gas chromatography. Journal of Chromatography A, 2007, 1166, 181-190.	1.8	57
139	Availability of polychlorinated biphenyls in field ontaminated sediment. Environmental Toxicology and Chemistry, 2007, 26, 1940-1948.	2.2	69
140	Determination of pyrethroid, organophosphate and organochlorine pesticides in water by headspace solid-phase microextraction. International Journal of Environmental Analytical Chemistry, 2006, 86, 381-389.	1.8	14
141	Pyrethroid Insecticides and Sediment Toxicity in Urban Creeks from California and Tennessee. Environmental Science & Technology, 2006, 40, 1700-1706.	4.6	244
142	Comparison of Chemical Approaches for Assessing Bioavailability of Sediment-Associated Contaminants. Environmental Science & Technology, 2006, 40, 6348-6353.	4.6	132
143	EFFECT OF PIPERONYL BUTOXIDE ON PERMETHRIN TOXICITY IN THE AMPHIPOD HYALELLA AZTECA. Environmental Toxicology and Chemistry, 2006, 25, 1817.	2.2	42
144	ELEVATED ORGANOCHLORINES IN THE BRAIN–HYPOTHALAMIC–PITUITARY COMPLEX OF INTERSEXUAL SHOVELNOSE STURGEON. Environmental Toxicology and Chemistry, 2006, 25, 1689.	2.2	13

#	Article	IF	CITATIONS
145	Aquatic Toxicity Due to Residential Use of Pyrethroid Insecticides. Environmental Science & Technology, 2005, 39, 9778-9784.	4.6	282
146	Simultaneous determination of pyrethroid, organophosphate, and organochlorine pesticides in fish tissue using tandem solid-phase extraction clean-up. International Journal of Environmental Analytical Chemistry, 2004, 84, 559-571.	1.8	13
147	Acute Toxicity of Sediment-Sorbed Endrin, Methoxychlor, and Endosulfan to Hyalella azteca and Chironomus tentans. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 457-64.	1.3	17
148	A Sonication Extraction Method for the Analysis of Pyrethroid, Organophosphate, and Organochlorine Pesticides from Sediment by Gas Chromatography with Electron-Capture Detection. Archives of Environmental Contamination and Toxicology, 2004, 47, 141-7.	2.1	82
149	Evaluation of Desulfuration Methods for Pyrethroid, Organophosphate, and Organochlorine Pesticides in Sediment with High Sulfur Content. Archives of Environmental Contamination and Toxicology, 2004, 47, 148-53.	2.1	11
150	Distribution and Toxicity of Sediment-Associated Pesticides in Agriculture-Dominated Water Bodies of California's Central Valley. Environmental Science & Technology, 2004, 38, 2752-2759.	4.6	260
151	Condensation nucleation light scattering detection with ion chromatography for direct determination of glyphosate and its metabolite in water. Journal of Chromatography A, 2003, 989, 231-238.	1.8	29
152	Direct Determination of Glyphosate in Environmental Waters Using Capillary Electrophoresis with Electrospray Condensation Nucleation Light Scattering Detection. International Journal of Environmental Analytical Chemistry, 2003, 83, 797-806.	1.8	21
153	Analysis of organic pollutants in sewage by supercritical fluid extraction. Chromatographia, 1999, 49, 399-405.	0.7	12
154	Analysis of atmospheric semi-volatile organic pollutants by adsorptiveenrichment and off-line supercritical fluid extraction—Gas chromatography. Chromatographia, 1999, 50, 305-310.	0.7	1
155	Characterization and application of acridine-9-N-acetyl-N-hydroxysuccinimide as a pre-column derivatization agent for fluorimetric detection of amino acids in liquid chromatography. Analyst, The, 1999, 124, 1755-1760.	1.7	10
156	Fluorescence properties of carbazole-9-ylpropionic acid and its application to the determination of amines via HPLC with fluorescence detection. Analyst, The, 1999, 124, 281-288.	1.7	12