
Dorota Kregiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314112/publications.pdf Version: 2024-02-01

DODOTA KRECIEL

#	Article	IF	CITATIONS
1	Biobutanol, the forgotten biofuel candidate: latest research and future directions. , 2022, , 315-328.		2
2	Hyssopus Essential Oil: An Update of Its Phytochemistry, Biological Activities, and Safety Profile. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-10.	1.9	21
3	Antibacterial Electroconductive Composite Coating of Cotton Fabric. Materials, 2022, 15, 1072.	1.3	15
4	From the Physicochemical Characteristic of Novel Hesperetin Hydrazone to Its In Vitro Antimicrobial Aspects. Molecules, 2022, 27, 845.	1.7	1
5	Biological Activity of Pulcherrimin from the Meschnikowia pulcherrima Clade. Molecules, 2022, 27, 1855.	1.7	17
6	Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. Fermentation, 2022, 8, 247.	1.4	4
7	Volatile Organic Compounds and Physiological Parameters as Markers of Potato (Solanum tuberosum) Tj ETQq1 🕻	l 0.78431 1.7	4 rgBT /Ove
8	New Antiadhesive Hydrophobic Polysiloxanes. Molecules, 2021, 26, 814.	1.7	7
9	Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection—A Review. Cells, 2021, 10, 701.	1.8	55
10	Biofilmy w systemach dystrybucji wody – przegląd historyczny, przyczyny i konsekwencje Cz. I. Krótka historia o wodzie bezpiecznej. Gaz, Woda; Technika Sanitarna, 2021, 1, 21-23.	0.0	0
11	Synthesis of Isothiocyanates Using DMT/NMM/TsOâ^' as a New Desulfurization Reagent. Molecules, 2021, 26, 2740.	1.7	7
12	Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	1.9	35
13	Ability of Yeast Metabolic Activity to Reduce Sugars and Stabilize Betalains in Red Beet Juice. Fermentation, 2021, 7, 105.	1.4	6
14	Antibacterial electroconductive <scp>rGO</scp> modified cotton fabric. Polymers for Advanced Technologies, 2021, 32, 3975-3981.	1.6	6
15	Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	68
16	Cyperus spp.: A Review on Phytochemical Composition, Biological Activity, and Health-Promoting Effects. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-17.	1.9	21
17	<i>Malva</i> species: Insights on its chemical composition towards pharmacological applications. Phytotherapy Research, 2020, 34, 546-567.	2.8	33
18	A New Approach to Producing High Yields of Pulcherrimin from Metschnikowia Yeasts. Fermentation, 2020, 6, 114.	1.4	8

#	Article	IF	CITATIONS
19	Heterotrophic Plate Count for Bottled Water Safety Management. Processes, 2020, 8, 739.	1.3	8
20	Multifunctional polylactide nonwovens with 3D network of multiwall carbon nanotubes. Applied Surface Science, 2020, 527, 146898.	3.1	13
21	Management of Streptococcus mutans-Candida spp. Oral Biofilms' Infections: Paving the Way for Effective Clinical Interventions. Journal of Clinical Medicine, 2020, 9, 517.	1.0	24
22	Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage. Molecules, 2020, 25, 1790.	1.7	25
23	Farnesol-Containing Macromolecular Systems for Antibiofilm Strategies. Surfaces, 2020, 3, 197-210.	1.0	6
24	Pandemia COVID-19 a wystÄ™powanie bakterii Legionella sp. w systemach wody ciepÅ,ej – ocena ryzyka. Gaz, Woda; Technika Sanitarna, 2020, 1, 34-37.	0.0	0
25	A short look at microbial producers of biobutanol: New trends, potentialities and limitations. Journal on Processing and Energy in Agriculture, 2020, 24, 100-104.	0.3	0
26	Lysates of Metschnikowia yeast with higher content of hydroxyproline. BioResources, 2020, 15, 3228-3236.	0.5	1
27	Biofilmy i osady w systemach dystrybucji wody pitnej. Gaz, Woda; Technika Sanitarna, 2020, 1, 19-22.	0.0	0
28	Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules, 2019, 9, 337.	1.8	64
29	Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends in Food Science and Technology, 2019, 91, 362-379.	7.8	56
30	Cucurbita Plants: From Farm to Industry. Applied Sciences (Switzerland), 2019, 9, 3387.	1.3	60
31	Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. Materials, 2019, 12, 350.	1.3	91
32	Biocontrol capability of local Metschnikowia sp. isolates. Antonie Van Leeuwenhoek, 2019, 112, 1425-1445.	0.7	41
33	Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules, 2019, 24, 1854.	1.7	106
34	Antimicrobial and Antibiofilm N-acetyl-L-cysteine Grafted Siloxane Polymers with Potential for Use in Water Systems. International Journal of Molecular Sciences, 2019, 20, 2011.	1.8	22
35	Comparison of Three Deoxidation Agents for Ozonated Broths Used in Anaerobic Biotechnological Processes. Processes, 2019, 7, 65.	1.3	1
36	The Therapeutic Potential of Apigenin. International Journal of Molecular Sciences, 2019, 20, 1305.	1.8	639

#	Article	IF	CITATIONS
37	Volatile compounds associated with growth of Asaia bogorensis and Asaia lannensis-unusual spoilage bacteria of functional beverages. Food Research International, 2019, 121, 379-386.	2.9	9
38	Modification of dual-component fibrous materials with carbon nanotubes and methyltrichlorosilane. Materials and Design, 2019, 162, 219-228.	3.3	20
39	NON-CONVENTIONAL YEAST METSCHNIKOWIA PULCHERRIMA AND ITS APPLICATION IN BIOTECHNOLOGY. Postepy Mikrobiologii, 2019, 56, 405-415.	0.1	4
40	Consortia formed by yeasts and acetic acid bacteria Asaia spp. in soft drinks. Antonie Van Leeuwenhoek, 2018, 111, 373-383.	0.7	18
41	Implementation of chemometrics in quality evaluation of food and beverages. Critical Reviews in Food Science and Nutrition, 2018, 58, 1747-1766.	5.4	43
42	Enzymatic Conversion of Sugar Beet Pulp: A Comparison of Simultaneous Saccharification and Fermentation and Separate Hydrolysis and Fermentation for Lactic Acid Production. Food Technology and Biotechnology, 2018, 56, 188-196.	0.9	29
43	Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. International Journal of Molecular Sciences, 2018, 19, 2843.	1.8	114
44	Activity of Mentha piperita L. Ethanol Extract against Acetic Acid Bacteria Asaia spp Foods, 2018, 7, 171.	1.9	7
45	Tagetes spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity. Molecules, 2018, 23, 2847.	1.7	66
46	Plants of Genus Mentha: From Farm to Food Factory. Plants, 2018, 7, 70.	1.6	107
47	Poly(silsesquioxanes) and poly(siloxanes) grafted with N-acetylcysteine for eradicating mature bacterial biofilms in water environment. Colloids and Surfaces B: Biointerfaces, 2018, 172, 627-634.	2.5	20
48	Sugar Beet Pulp as a Source of Valuable Biotechnological Products. , 2018, , 359-392.		16
49	Nepeta species: From farm to food applications and phytotherapy. Trends in Food Science and Technology, 2018, 80, 104-122.	7.8	83
50	Quillaja saponaria Saponins with Potential to Enhance the Effectiveness of Disinfection Processes in the Beverage Industry. Applied Sciences (Switzerland), 2018, 8, 368.	1.3	10
51	The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Research International, 2018, 113, 234-244.	2.9	52
52	Urtica spp.: Ordinary Plants with Extraordinary Properties. Molecules, 2018, 23, 1664.	1.7	134
53	Utilization of post-fermentation yeasts for yeast extract production by autolysis: the effect of yeast strain and saponin from <i>Quillaja saponaria</i> . Journal of the Institute of Brewing, 2017, 123, 396-401.	0.8	22
54	Phenolic Compounds Contained in Little-known Wild Fruits as Antiadhesive Agents Against the Beverage-Spoiling Bacteria Asaia spp Molecules, 2017, 22, 1256.	1.7	38

#	Article	IF	CITATIONS
55	Concept for Recycling Waste Biomass from the Sugar Industry for Chemical and Biotechnological Purposes. Molecules, 2017, 22, 1544.	1.7	24
56	Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis. Molecules, 2017, 22, 1608.	1.7	5
57	Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp. Energies, 2017, 10, 1255.	1.6	32
58	Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis. Molecules, 2017, 22, 2036.	1.7	22
59	WxC-Î ² -SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural. Molecules, 2017, 22, 2033.	1.7	10
60	Antibacterial and Antiadhesive Activities of Extracts from Edible Plants against Soft Drink Spoilage by Asaia spp Journal of Food Protection, 2017, 80, 25-34.	0.8	22
61	Black Currant (<i>Ribes nigrum</i> L.) and Bilberry (<i>Vaccinium myrtillus</i> L.) Fruit Juices Inhibit Adhesion of <i>Asaia</i> spp BioMed Research International, 2016, 2016, 1-14.	0.9	13
62	Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production. BioMed Research International, 2016, 2016, 1-10.	0.9	49
63	Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production. Molecules, 2016, 21, 1380.	1.7	31
64	Ozonation as an effective way to stabilize new kinds of fermentation media used in biotechnological production of liquid fuel additives. Biotechnology for Biofuels, 2016, 9, 150.	6.2	10
65	Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus. Brazilian Journal of Microbiology, 2016, 47, 965-972.	0.8	18
66	Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings. Colloids and Surfaces B: Biointerfaces, 2016, 137, 158-166.	2.5	53
67	Growth of Asaia spp. in Flavored Mineral Water - Evaluation of the Volumetric "Bottle Effect― International Journal of Food Processing Technology, 2016, 3, .	0.3	2
68	Amylolytic activity of kluyver-positive Debaryomyces occidentalis cells immobilized in foamed alginate gel. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 05, 311-313.	0.4	2
69	Health Safety of Soft Drinks: Contents, Containers, and Microorganisms. BioMed Research International, 2015, 2015, 1-15.	0.9	103
70	Adhesion of Asaia bogorensis to Glass and Polystyrene in the Presence of Cranberry Juice. Journal of Food Protection, 2015, 78, 1186-1190.	0.8	10
71	Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria. Enzyme and Microbial Technology, 2015, 75-76, 44-48.	1.6	19
72	Electrochemical deposition of silver nanoparticle and polymerization of pyrrole on fabrics via conducting multiwall carbon nanotubes. Cellulose, 2015, 22, 3063-3075.	2.4	18

#	Article	IF	CITATIONS
73	ACETIC ACID BACTERIA – TAXONOMY, ECOLOGY, AND INDUSTRIAL APPLICATION. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2015, , .	0.1	6
74	Effect of Plasma Processing and Organosilane Modifications of Polyethylene onAeromonas hydrophilaBiofilm Formation. BioMed Research International, 2014, 2014, 1-8.	0.9	13
75	Attachment ofAsaia bogorensisOriginating in Fruit-Flavored Water to Packaging Materials. BioMed Research International, 2014, 2014, 1-6.	0.9	10
76	Advances in biofilm control for food and beverage industry using organo-silane technology: A review. Food Control, 2014, 40, 32-40.	2.8	52
77	Biodiversity of brewery yeast strains and their fermentative activities. Yeast, 2014, 32, n/a-n/a.	0.8	10
78	Growth and by-product profiles ofKluyveromyces marxianuscells immobilized in foamed alginate. Yeast, 2014, 32, n/a-n/a.	0.8	19
79	Effect of quaternary ammonium silane coating on adhesive immobilization of industrial yeasts. Chemical Papers, 2014, 68, .	1.0	2
80	Physiological tests for yeast brewery cells immobilized on modified chamotte carrier. Antonie Van Leeuwenhoek, 2013, 104, 703-714.	0.7	16
81	Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila. World Journal of Microbiology and Biotechnology, 2013, 29, 1197-1206.	1.7	19
82	Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification. World Journal of Microbiology and Biotechnology, 2013, 29, 1307-1316.	1.7	18
83	Growth and metabolic activity of conventional and non-conventional yeasts immobilized in foamed alginate. Enzyme and Microbial Technology, 2013, 53, 229-234.	1.6	32
84	Attachment of Asaia lannensis to materials commonly used in beverage industry. Food Control, 2013, 32, 537-542.	2.8	22
85	Novel permittivity test for determination of yeast surface charge and flocculation abilities. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1881-1886.	1.4	18
86	Asaia lannensis–the spoilage acetic acid bacteria isolated from strawberry-flavored bottled water in Poland. Food Control, 2012, 26, 147-150.	2.8	25
87	Adhesion of yeast cells to different porous supports, stability of cell-carrier systems and formation of volatile by-products. World Journal of Microbiology and Biotechnology, 2012, 28, 3399-3408.	1.7	25
88	BACTERIA ASAIA SP. – THE NEW CONTAMINTION OF FLAVOURED MINERAL WATERS. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2011, , .	0.1	0
89	Novel yeast cell dehydrogenase activity assay in situ. Polish Journal of Microbiology, 2006, 55, 127-31.	0.6	8
90	Succinate Dehydrogenase of Saccharomyces cerevisiae – The Unique Enzyme of TCA Cycle – Current		10

Knowledge and New Perspectives., 0,,.

#	Article	IF	CITATIONS
91	Biofilms in Beverage Industry. , 0, , .		2
92	Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. , 0, , .		12
93	Food Preservatives from Plants. , 0, , .		7
94	Saponin-Based, Biological-Active Surfactants from Plants. , 0, , .		57