
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313940/publications.pdf Version: 2024-02-01

FRIC CLOUVER

#	Article	IF	CITATIONS
1	A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 2016, 141, 227-238.	3.2	1,081
2	Longer and more frequent marine heatwaves over the past century. Nature Communications, 2018, 9, 1324.	12.8	1,081
3	Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 2019, 9, 306-312.	18.8	883
4	The unprecedented 2015/16 Tasman Sea marine heatwave. Nature Communications, 2017, 8, 16101.	12.8	374
5	Categorizing and Naming Marine Heatwaves. Oceanography, 2018, 31, .	1.0	368
6	A global assessment of marine heatwaves and their drivers. Nature Communications, 2019, 10, 2624.	12.8	337
7	Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 2019, 6, .	2.5	300
8	Marine Heatwaves. Annual Review of Marine Science, 2021, 13, 313-342.	11.6	254
9	Keeping pace with marine heatwaves. Nature Reviews Earth & Environment, 2020, 1, 482-493.	29.7	175
10	Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 2020, 10, 19359.	3.3	155
11	Mean warming not variability drives marine heatwave trends. Climate Dynamics, 2019, 53, 1653-1659.	3.8	121
12	Extreme Marine Warming Across Tropical Australia During Austral Summer 2015–2016. Journal of Geophysical Research: Oceans, 2018, 123, 1301-1326.	2.6	111
13	Extending our understanding of South Pacific gyre "spin-upâ€: Modeling the East Australian Current in a future climate. Journal of Geophysical Research: Oceans, 2014, 119, 2788-2805.	2.6	82
14	Natural hazards in Australia: heatwaves. Climatic Change, 2016, 139, 101-114.	3.6	80
15	Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Progress in Oceanography, 2018, 161, 116-130.	3.2	79
16	Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Progress in Oceanography, 2017, 151, 189-205.	3.2	76
17	Natural hazards in Australia: sea level and coastal extremes. Climatic Change, 2016, 139, 69-83.	3.6	70
18	Modulation of Atlantic Basin Tropical Cyclone Activity by the Madden–Julian Oscillation (MJO) from 1905 to 2011. Journal of Climate, 2015, 28, 204-217.	3.2	55

#	Article	IF	CITATIONS
19	Maddenâ€Julian Oscillation and sea level: Local and remote forcing. Journal of Geophysical Research, 2010, 115, .	3.3	50
20	Projected Tasman Sea Extremes in Sea Surface Temperature through the Twenty-First Century. Journal of Climate, 2014, 27, 1980-1998.	3.2	50
21	A Reconstruction of Madden–Julian Oscillation Variability from 1905 to 2008. Journal of Climate, 2011, 25, 1996-2019.	3.2	46
22	Projected changes to Tasman Sea eddies in a future climate. Journal of Geophysical Research: Oceans, 2015, 120, 7150-7165.	2.6	46
23	Drivers of Marine Heatwaves in the Northwest Atlantic: The Role of Air–Sea Interaction During Onset and Decline. Frontiers in Marine Science, 2021, 8, .	2.5	39
24	Detecting Marine Heatwaves With Sub-Optimal Data. Frontiers in Marine Science, 2019, 6, .	2.5	39
25	A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall. Climate Dynamics, 2017, 49, 2585-2603.	3.8	36
26	Predominant Atmospheric and Oceanic Patterns during Coastal Marine Heatwaves. Frontiers in Marine Science, 2017, 4, .	2.5	36
27	Editorial: Advances in Understanding Marine Heatwaves and Their Impacts. Frontiers in Marine Science, 2020, 7, .	2.5	36
28	Anthropogenic and Natural Influences on Record 2016 Marine Heat waves. Bulletin of the American Meteorological Society, 2018, 99, S44-S48.	3.3	35
29	Marine cold-spells. Progress in Oceanography, 2021, 198, 102684.	3.2	35
30	Environmental drivers of unprecedented Alexandrium catenella dinoflagellate blooms off eastern Tasmania, 2012–2018. Harmful Algae, 2019, 87, 101628.	4.8	32
31	Variations in global tropical cyclone activity and the Maddenâ€Julian Oscillation since the midtwentieth century. Geophysical Research Letters, 2015, 42, 4199-4207.	4.0	27
32	Multidecadal variations in the modulation of Alaska wintertime air temperature by the Madden–Julian Oscillation. Theoretical and Applied Climatology, 2015, 121, 1-11.	2.8	27
33	Remote Forcing of Tasman Sea Marine Heatwaves. Journal of Climate, 2020, 33, 5337-5354.	3.2	27
34	Storm tracks in the Southern Hemisphere subtropical oceans. Journal of Geophysical Research: Oceans, 2014, 119, 6078-6100.	2.6	22
35	Modelling the shelf circulation off eastern Tasmania. Continental Shelf Research, 2016, 130, 14-33.	1.8	21
36	A statistical seasonal forecast model of North Indian Ocean tropical cyclones using the quasiâ€biennial oscillation. International Journal of Climatology, 2019, 39, 934-952.	3.5	20

#	Article	IF	CITATIONS
37	Sea level and circulation variability of the Gulf of Carpentaria: Influence of the Madden-Julian Oscillation and the adjacent deep ocean. Journal of Geophysical Research, 2011, 116, .	3.3	19
38	How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?. Marine Policy, 2018, 88, 295-302.	3.2	18
39	Seasonal forecasting of tropical cyclones in the North Indian Ocean region: the role of El Niño-Southern Oscillation. Climate Dynamics, 2020, 54, 1571-1589.	3.8	18
40	Changing Spatial Patterns of Deep Convection in the Subpolar North Atlantic. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017245.	2.6	18
41	Variability and Longâ€Term Trends in the Shelf Circulation Off Eastern Tasmania. Journal of Geophysical Research: Oceans, 2018, 123, 7366-7381.	2.6	15
42	A Statistical Method for Improving Continental Shelf and Nearshore Marine Climate Predictions. Journal of Atmospheric and Oceanic Technology, 2014, 31, 216-232.	1.3	14
43	Blind use of reanalysis data: apparent trends in Madden–Julian Oscillation activity driven by observational changes. International Journal of Climatology, 2016, 36, 3458-3468.	3.5	13
44	The Relationship between the Madden–Julian Oscillation (MJO) and Southeastern New England Snowfall. Monthly Weather Review, 2016, 144, 1355-1362.	1.4	13
45	Estimating extremes from global ocean and climate models: A Bayesian hierarchical model approach. Progress in Oceanography, 2014, 122, 77-91.	3.2	12
46	Modulation of wetâ€season rainfall over Iran by the Madden–Julian Oscillation, Indian Ocean Dipole and El Niño–Southern Oscillation. International Journal of Climatology, 2019, 39, 4029-4040.	3.5	11
47	Differential vulnerability to climate change yields novel deep-reef communities. Nature Climate Change, 2018, 8, 873-878.	18.8	10
48	Influence of the Madden–Julian oscillation on Costa Rican midâ€summer drought timing. International Journal of Climatology, 2019, 39, 292-301.	3.5	10
49	Predictability of the Madden–Julian Oscillation index: seasonality and dependence on MJO phase. Climate Dynamics, 2016, 46, 159-176.	3.8	8
50	Characteristic atmospheric states during mid-summer droughts over Central America and Mexico. Climate Dynamics, 2020, 55, 681-701.	3.8	8
51	Extreme surface and near-bottom currents in the northwest Atlantic. Natural Hazards, 2012, 64, 1425-1446.	3.4	7
52	Joint Modulation of Intraseasonal Rainfall in Tropical Australia by the Maddenâ€Julian Oscillation and El Niñoâ€6outhern Oscillation. Geophysical Research Letters, 2017, 44, 10,754.	4.0	7
53	Evaluation of hydrodynamic ocean models as a first step in larval dispersal modelling. Continental Shelf Research, 2018, 152, 38-49.	1.8	7
54	Intraseasonal variability of sea level and circulation in the Gulf of Thailand: the role of the Madden–Julian Oscillation. Climate Dynamics, 2014, 42, 401-416.	3.8	5

#	Article	IF	CITATIONS
55	Co-producing maps as boundary objects: Bridging Labrador Inuit knowledge and oceanographic research. Journal of Cultural Geography, 2022, 39, 55-89.	0.9	5
56	Influence of the <scp>MJO</scp> on daily surface air temperature over Iran. International Journal of Climatology, 2021, 41, 4562-4573.	3.5	4
57	The Record-Breaking 1933 Atlantic Hurricane Season. Bulletin of the American Meteorological Society, 2021, 102, E446-E463.	3.3	2
58	Statistical Reconstruction of Seasonal Tropical Cyclone Variability in the North Atlantic Basin. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032669.	3.3	0