Hugo B Suffredini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313927/publications.pdf

Version: 2024-02-01

471477 434170 1,117 31 17 31 citations h-index g-index papers 31 31 31 1130 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conceptual Membraneless Fuel Cell Device Based On Ionic Liquid Water Interface. ChemElectroChem, 2021, 8, 1626-1631.	3.4	2
2	On the Use of Dispersive Liquidâ€liquid Microextraction Combined with Organic/Water Interface Electrochemistry. Electroanalysis, 2017, 29, 259-263.	2.9	2
3	Simple model to study heterogeneous electrocatalysts. Journal of Power Sources, 2015, 273, 360-367.	7.8	3
4	Single Oil Drop Electrochemistry on a Screenâ€Printed Electrode Surface. Electroanalysis, 2014, 26, 1660-1663.	2.9	5
5	Ferrocene partition calculation in a biodiesel/water interface using electrochemical methods. lonics, 2014, 20, 1183-1188.	2.4	3
6	Organic/Water Interface Electrochemistry for the Direct Detection of a Model Pesticide in Soybean Oil. Electroanalysis, 2013, 25, 1541-1546.	2.9	7
7	The influence of different co-catalysts in Pt-based ternary and quaternary electro-catalysts on the electro-oxidation of methanol and ethanol in acid media. Journal of Electroanalytical Chemistry, 2012, 668, 13-25.	3.8	21
8	Effects of catalyst load in Pt and Pb-based catalysts using formic acid oxidation as a model. Journal of Power Sources, 2012, 199, 75-84.	7.8	11
9	The Use of Diamond Electrodes in the Interface Biodiesel/Water. Electroanalysis, 2011, 23, 330-333.	2.9	5
10	Active Pt-PbOx/C anodes to promote the formic acid oxidation in presence of sulfuric acid. Journal of the Brazilian Chemical Society, 2010, 21, 185-190.	0.6	9
11	New Insights on the Spatial Distribution of Metallic Phases in a Pb-Based Electrocatalyst. Journal of Physical Chemistry C, 2010, 114, 9227-9233.	3.1	5
12	Reaproveitamento de óxidos de manganês de pilhas descartadas para eletrocatálise da reação de redução de oxigênio em meio básico. Quimica Nova, 2010, 33, 730-733.	0.3	5
13	Methanol and ethanol electro-oxidation on Pt–SnO2 and Pt–Ta2O5 sol–gel-modified boron-doped diamond surfaces. Materials Chemistry and Physics, 2009, 117, 434-442.	4.0	39
14	DFT and electrochemical studies on nortriptyline oxidation sites. Journal of Molecular Modeling, 2009, 15, 945-952.	1.8	12
15	Carbon supported electrocatalysts prepared by the sol–gel method and their utilization for the oxidation of methanol in acid media. Journal of Sol-Gel Science and Technology, 2009, 49, 131-136.	2.4	17
16	Electrodeposition and characterization of thin selenium films modified with lead ad-atoms. Applied Surface Science, 2008, 254, 5612-5617.	6.1	14
17	Electrochemical behavior of dopamine at a 3,3′-dithiodipropionic acid self-assembled monolayers. Talanta, 2007, 72, 427-433.	5.5	47
18	Enhanced ethanol oxidation on PbOx-containing electrode materials for fuel cell applications. Journal of Power Sources, 2007, 171, 355-362.	7.8	45

#	Article	IF	CITATIONS
19	Preparation, characterization and utilization of a new electrocatalyst for ethanol oxidation obtained by the sol–gel method. Journal of Power Sources, 2006, 156, 300-305.	7.8	57
20	Electro-oxidation of methanol and ethanol using a Pt–RuO2/C composite prepared by the sol–gel technique and supported on boron-doped diamond. Journal of Power Sources, 2006, 158, 124-128.	7.8	69
21	Sol–gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium. Journal of Power Sources, 2006, 162, 9-20.	7.8	55
22	Electroanalytical Determination of Carbaryl in Natural Waters on Boron Doped Diamond Electrode. Electroanalysis, 2006, 18, 253-258.	2.9	47
23	Characterization and Use of Copper Solid Amalgam Electrode for Electroanalytical Determination of Triazines-Based Herbicides. Electroanalysis, 2006, 18, 605-612.	2.9	28
24	AFM studies and electrochemical characterization of boron-doped diamond surfaces modified with metal oxides by the Sol-Gel method. Journal of the Brazilian Chemical Society, 2006, 17, 257-264.	0.6	31
25	Carbon Surfaces for Electroanalytical Applications: A Comparative Study. Analytical Letters, 2005, 38, 1115-1125.	1.8	36
26	Electrochemical Behavior of Nicotine Studied by Voltammetric Techniques at Boronâ€Doped Diamond Electrodes. Analytical Letters, 2005, 38, 1587-1599.	1.8	64
27	Improved stability of PtOx sol-gel-modified diamond electrodes covered with a Nafion \hat{A}^{\otimes} film. Journal of the Brazilian Chemical Society, 2005, 16, 903-906.	0.6	27
28	The water decomposition reactions on boron-doped diamond electrodes. Journal of the Brazilian Chemical Society, 2004, 15 , $16-21$.	0.6	48
29	Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochemistry Communications, 2004, 6, 1025-1028.	4.7	73
30	Enhanced electrochemical response of boron-doped diamond electrodes brought on by a cathodic surface pre-treatment. Electrochimica Acta, 2004, 49, 4021-4026.	5.2	222
31	Recent developments in electrode materials for water electrolysis. International Journal of Hydrogen Energy, 2000, 25, 415-423.	7.1	108