Kana M Sureshan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313448/publications.pdf

Version: 2024-02-01

128 papers

3,531 citations

30 h-index 50 g-index

147 all docs

147 docs citations

times ranked

147

2768 citing authors

#	Article	IF	CITATIONS
1	Secondary Structure Tuning of a Pseudoprotein Between βâ€Meander and αâ€Helical Forms in the Solidâ€State. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
2	Frontispiece: Secondary Structure Tuning of a Pseudoprotein Between βâ€Meander and αâ€Helical Forms in the Solidâ€State. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
3	Frontispiz: Secondary Structure Tuning of a Pseudoprotein Between βâ€Meander and αâ€Helical Forms in the Solidâ€State. Angewandte Chemie, 2022, 134, .	2.0	0
4	Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
5	Topochemical Postulates: Are They Relevant for Topochemical Reactions Occurring at Elevated Temperatures?. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
6	Azide–Alkyne Interactions: A Crucial Attractive Force for Their Preorganization for Topochemical Cycloaddition Reaction. Chemistry - A European Journal, 2022, 28, .	3.3	11
7	A Biomaterialâ€Based Porous Core–Shell Sorbent for Practical and Efficient Marine Oil Spill Recovery. Advanced Sustainable Systems, 2022, 6, .	5.3	7
8	Frontispiece: Topochemical Postulates: Are They Relevant for Topochemical Reactions Occurring at Elevated Temperatures?. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
9	Frontispiz: Topochemical Postulates: Are They Relevant for Topochemical Reactions Occurring at Elevated Temperatures?. Angewandte Chemie, 2022, 134, .	2.0	O
10	Single-crystal-to-single-crystal translation of a helical supramolecular polymer to a helical covalent polymer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
11	Quantification of Noncovalent Interactions in Azide–Pnictogen, –Chalcogen, and –Halogen Contacts. Chemistry - A European Journal, 2021, 27, 4627-4639.	3.3	25
12	Synthesis of novel seven-membered carbasugars and evaluation of their glycosidase inhibition potentials. RSC Advances, 2021, 11, 9410-9420.	3.6	1
13	Single-crystal-to-single-crystal synthesis of a pseudostarch ⟨i⟩via⟨ i⟩ topochemical azide–alkyne cycloaddition polymerization. Chemical Science, 2021, 12, 11652-11658.	7.4	13
14	Polymers with advanced structural and supramolecular features synthesized through topochemical polymerization. Chemical Science, 2021, 12, 5361-5380.	7.4	34
15	Topochemical polymerizations for the solid-state synthesis of organic polymers. Chemical Society Reviews, 2021, 50, 4062-4099.	38.1	79
16	Novel Substrates for Kinases Involved in the Biosynthesis of Inositol Pyrophosphates and Their Enhancement of ATPase Activity of a Kinase. Molecules, 2021, 26, 3601.	3.8	2
17	Solvent-Free and Catalyst-Free Synthesis of Cross-Linkable Polyfumaramides via Topochemical Azide-Alkyne Cycloaddition Polymerization. ACS Sustainable Chemistry and Engineering, 2021, 9, 9871-9878.	6.7	4
18	Topochemical Ene–Azide Cycloaddition Reaction. Angewandte Chemie - International Edition, 2021, 60, 24875-24881.	13.8	22

#	Article	IF	CITATIONS
19	Azideâ‹â‹â‹Oxygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angewandte Chemie - International Edition, 2021, 60, 22797-22803.	13.8	26
20	Azideâ«â«0xygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angewandte Chemie, 2021, 133, 22979.	2.0	3
21	Innenrücktitelbild: Topochemical Ene–Azide Cycloaddition Reaction (Angew. Chem. 47/2021). Angewandte Chemie, 2021, 133, 25367-25367.	2.0	0
22	Crystalâ€toâ€Crystal Synthesis of Helically Ordered Polymers of Trehalose by Topochemical Polymerization. Angewandte Chemie - International Edition, 2020, 59, 2897-2903.	13.8	25
23	Scalable Topochemical Synthesis of a Pseudoprotein in Aerogel for Water-Capturing Applications. ACS Applied Polymer Materials, 2020, 2, 4985-4992.	4.4	12
24	How Far Are We in Combating Marine Oil Spills by Using Phaseâ€Selective Organogelators?. ChemSusChem, 2020, 13, 5343-5360.	6.8	32
25	Designed Synthesis of a 1D Polymer in Twistâ€Stacked Topology via Singleâ€Crystalâ€ŧoâ€Singleâ€Crystal Polymerization. Angewandte Chemie - International Edition, 2020, 59, 15580-15585.	13.8	32
26	βâ€Sheet to Helicalâ€Sheet Evolution Induced by Topochemical Polymerization: Crossâ€Î±â€Amyloidâ€like Packir a Pseudoprotein with Glyâ€Pheâ€Gly Repeats. Angewandte Chemie, 2020, 132, 8939-8944.	ng in 2.0	10
27	βâ€Sheet to Helicalâ€Sheet Evolution Induced by Topochemical Polymerization: Crossâ€Î±â€Amyloidâ€like Packir a Pseudoprotein with Glyâ€Pheâ€Gly Repeats. Angewandte Chemie - International Edition, 2020, 59, 8854-8859.	ng in 13.8	33
28	Designed Synthesis of a 1D Polymer in Twistâ€Stacked Topology via Singleâ€Crystalâ€toâ€Singleâ€Crystal Polymerization. Angewandte Chemie, 2020, 132, 15710-15715.	2.0	14
29	Crystalâ€ŧo rystal Synthesis of Helically Ordered Polymers of Trehalose by Topochemical Polymerization. Angewandte Chemie, 2020, 132, 2919-2925.	2.0	12
30	Topochemical synthesis of different polymorphs of polymers as a paradigm for tuning properties of polymers. Nature Communications, 2020, 11, 865.	12.8	49
31	Halobenzyl alcohols as structurally simple organogelators. CrystEngComm, 2019, 21, 5310-5316.	2.6	5
32	Topochemical Azide–Alkyne Cycloaddition Reaction. Accounts of Chemical Research, 2019, 52, 3149-3163.	15.6	89
33	Sugar-Based Organogelators for Various Applications. Langmuir, 2019, 35, 6005-6014.	3.5	44
34	Solidâ€State Synthesis of Two Different Polymers in a Single Crystal: A Miscible Polymer Blend from a Topochemical Reaction. Angewandte Chemie - International Edition, 2019, 58, 2754-2759.	13.8	35
35	Spontaneous Singleâ€Crystalâ€toâ€Singleâ€Crystal Evolution of Two Crossâ€Laminated Polymers. Angewandte Chemie - International Edition, 2019, 58, 612-617.	13.8	31
36	Solidâ€State Synthesis of Two Different Polymers in a Single Crystal: A Miscible Polymer Blend from a Topochemical Reaction. Angewandte Chemie, 2019, 131, 2780-2785.	2.0	16

#	Article	IF	CITATIONS
37	Spontaneous Singleâ€Crystalâ€toâ€Singleâ€Crystal Evolution of Two Crossâ€Laminated Polymers. Angewandte Chemie, 2019, 131, 622-627.	2.0	14
38	Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2896-2901.	7.1	77
39	Model molecules to classify CHâ ^{<-} O hydrogen-bonds. Chemical Communications, 2018, 54, 4629-4632.	4.1	19
40	Organogel-Derived Covalent–Noncovalent Hybrid Polymers as Alkali Metal-Ion Scavengers for Partial Deionization of Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15183-15188.	8.0	12
41	Three-way competition in a topochemical reaction: permutative azide–alkyne cycloaddition reactions leading to a vast library of products in the crystal. CrystEngComm, 2018, 20, 1478-1482.	2.6	21
42	A Library of Multipurpose Supramolecular Supergelators: Fabrication of Structured Silica, Porous Plastics, and Fluorescent Gels. Chemistry - an Asian Journal, 2018, 13, 187-193.	3.3	9
43	Synthesis and Reversible Hydration of a Pseudoprotein, a Fully Organic Polymeric Desiccant by Multiple Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations. Angewandte Chemie - International Edition, 2018, 57, 12435-12439.	13.8	43
44	Synthesis and Reversible Hydration of a Pseudoprotein, a Fully Organic Polymeric Desiccant by Multiple Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformations. Angewandte Chemie, 2018, 130, 12615-12619.	2.0	19
45	Tunable Mechanical Response from a Crystal Undergoing Topochemical Dimerization: Instant Explosion at a Faster Rate and Chemical Storage of a Harvestable Explosion at a Slower Rate. Angewandte Chemie - International Edition, 2018, 57, 9362-9366.	13.8	35
46	Tunable Mechanical Response from a Crystal Undergoing Topochemical Dimerization: Instant Explosion at a Faster Rate and Chemical Storage of a Harvestable Explosion at a Slower Rate. Angewandte Chemie, 2018, 130, 9506-9510.	2.0	17
47	Topochemical Azide–Alkyne Cycloaddition Reaction in Gels: Size-Tunable Synthesis of Triazole-Linked Polypeptides. Journal of the American Chemical Society, 2017, 139, 1584-1589.	13.7	63
48	Regioselective S _N 2 reactions for rapid syntheses of azido-inositols by one-pot sequence-specific nucleophilysis. Chemical Communications, 2017, 53, 3971-3973.	4.1	9
49	Organogelator–Cellulose Composite for Practical and Ecoâ€Friendly Marine Oilâ€Spill Recovery. Angewandte Chemie, 2017, 129, 9533-9537.	2.0	22
50	Organogelator–Cellulose Composite for Practical and Ecoâ€Friendly Marine Oilâ€Spill Recovery. Angewandte Chemie - International Edition, 2017, 56, 9405-9409.	13.8	87
51	Semiconducting Fabrics by Inâ€Situ Topochemical Synthesis of Polydiacetylene: A New Dimension to the Use of Organogels. Angewandte Chemie, 2016, 128, 2391-2395.	2.0	15
52	A versatile glycosylation strategy via Au(<scp>iii</scp>) catalyzed activation of thioglycoside donors. Chemical Science, 2016, 7, 4259-4263.	7.4	37
53	Synthesis of dimeric analogs of adenophostin A that potently evoke Ca ²⁺ release through IP ₃ receptors. RSC Advances, 2016, 6, 86346-86351.	3.6	7
54	A Molecular‣evel Study of Metamorphosis and Strengthening of Gels by Spontaneous Polymorphic Transitions. ChemPhysChem, 2016, 17, 3062-3067.	2.1	8

#	Article	IF	CITATIONS
55	Organogel-assisted topochemical synthesis of multivalent glyco-polymer for high-affinity lectin binding. Chemical Communications, 2016, 52, 14089-14092.	4.1	26
56	Crystal-to-Crystal Synthesis of Triazole-Linked Pseudo-proteins via Topochemical Azide–Alkyne Cycloaddition Reaction. Journal of the American Chemical Society, 2016, 138, 14824-14827.	13.7	66
57	Carbasugar Synthesis via Vinylogous Ketal: Total Syntheses of (+)-MK7607, (â^')-MK7607, (â^')-Gabosine A, (â^')-Epoxydine B, (â^')-Epoxydine C, <i>epi</i> -(+)-Gabosine E and <i>epi</i> -(+)-MK7607. Journal of Organic Chemistry, 2016, 81, 11635-11645.	3.2	16
58	A Sugarâ€Based Gelator for Marine Oilâ€Spill Recovery. Angewandte Chemie - International Edition, 2016, 55, 7782-7785.	13.8	136
59	A Sugarâ€Based Gelator for Marine Oilâ€Spill Recovery. Angewandte Chemie, 2016, 128, 7913-7916.	2.0	34
60	Semiconducting Fabrics by Inâ€Situ Topochemical Synthesis of Polydiacetylene: A New Dimension to the Use of Organogels. Angewandte Chemie - International Edition, 2016, 55, 2345-2349.	13.8	37
61	The topochemical synthesis of triazole-linked homobasic DNA. Chemical Communications, 2016, 52, 886-888.	4.1	15
62	CaO nanocrystals grown over SiO ₂ microtubes for efficient CO ₂ capture: organogel sets the platform. Chemical Communications, 2016, 52, 1342-1345.	4.1	24
63	Stoichiometric Sensing to Opt between Gelation and Crystallization. Angewandte Chemie - International Edition, 2015, 54, 12078-12082.	13.8	45
64	Total syntheses of five uvacalols: structural validation of uvacalol A, uvacalol B and uvacalol C and disproval of the structures of uvacalol E and uvacalol G. Organic and Biomolecular Chemistry, 2015, 13, 3900-3910.	2.8	7
65	A Spontaneous Single-Crystal-to-Single-Crystal Polymorphic Transition Involving Major Packing Changes. Journal of the American Chemical Society, 2015, 137, 1692-1696.	13.7	64
66	Triazolophostins: a library of novel and potent agonists of IP ₃ receptors. Organic and Biomolecular Chemistry, 2015, 13, 6698-6710.	2.8	11
67	Total Synthesis and Glycosidase Inhibition Studies of (–)â€Gabosine J and Its Derivatives. European Journal of Organic Chemistry, 2014, 2014, 2349-2356.	2.4	22
68	Reverse-CD mimics with flexible linkages offer adaptable cavity sizes for guest encapsulation. Chemical Communications, 2014, 50, 317-319.	4.1	16
69	Bio-inspired synthesis of rare and unnatural carbohydrates and cyclitols through strain driven epimerization. Chemical Communications, 2014, 50, 6707-6710.	4.1	9
70	Hopping-Mediated Anion Transport through a Mannitol-Based Rosette Ion Channel. Journal of the American Chemical Society, 2014, 136, 14128-14135.	13.7	89
71	Total syntheses and structural validation of lincitol A, lincitol B, uvacalol I, uvacalol J, and uvacalol K. Organic and Biomolecular Chemistry, 2014, 12, 7279-7289.	2.8	10
72	Synthesis of Triazoleâ€linked Homonucleoside Polymers through Topochemical Azide–Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2014, 53, 9522-9525.	13.8	63

#	Article	IF	CITATIONS
73	Strength from Weakness: Conformational Divergence between Solid and Solution States of Substituted Cyclitols Facilitated by CH···O Hydrogen Bonding. Journal of Organic Chemistry, 2014, 79, 4892-4908.	3.2	8
74	Vinylogy in Orthoester Hydrolysis: Total Syntheses of Cyclophellitol, Valienamine, Gabosine K, Valienone, Gabosine G, 1- <i>epi</i> -Streptol, Streptol, and Uvamalol A. Journal of Organic Chemistry, 2013, 78, 7690-7700.	3.2	23
75	Chemoselective alcoholysis/acetolysis of trans-ketals over cis-ketals and its application in the total synthesis of the cellular second messenger, d-myo-inositol-1,4,5-trisphosphate. Organic and Biomolecular Chemistry, 2013, 11, 5443.	2.8	6
76	H2SO4-silica: an eco-friendly heterogeneous catalyst for the differential protection of myo-inositol hydroxyl groups. RSC Advances, 2013, 3, 7321.	3.6	5
77	Weak becomes strong: remarkable strength of Câ€"Hâ<" hydrogen bond in the presence of Oâ€"Hâ<" hydrogen bonds in the crystal stabilization. CrystEngComm, 2013, 15, 1676.	2.6	24
78	Supramolecular design of a bicomponent topochemical reaction between two non-identical molecules. Chemical Communications, 2013, 49, 1494-1496.	4.1	43
79	A versatile solvent-free azide–alkyne click reaction catalyzed by in situ generated copper nanoparticles. Applied Catalysis A: General, 2013, 453, 151-158.	4.3	67
80	A Crystalâ€ŧoâ€Crystal Synthesis of Triazolyl‣inked Polysaccharide. Angewandte Chemie - International Edition, 2013, 52, 8671-8675.	13.8	70
81	Contribution of Phosphates and Adenine to the Potency of Adenophostins at the IP ₃ Receptor: Synthesis of All Possible Bisphosphates of Adenophostin A. Journal of Medicinal Chemistry, 2012, 55, 1706-1720.	6.4	22
82	Strength from weakness: The role of CH…N hydrogen bond in the formation of wave-like topology in crystals of aza-heterocycles. CrystEngComm, 2012, 14, 519-524.	2.6	31
83	Strength from weakness: opportunistic CHâ <o 2012,="" 48,="" 717-719.<="" and="" bonds="" chemical="" communications,="" conformational="" dictate="" differentially="" fate="" hydrogen="" in="" solid="" solution="" states.="" td="" the=""><td>4.1</td><td>15</td></o>	4.1	15
84	A mannitol based phase selective supergelator offers a simple, viable and greener method to combat marine oil spills. Chemical Communications, 2012, 48, 5250.	4.1	126
85	Topochemical Click Reaction: Spontaneous Selfâ€Stitching of a Monosaccharide to Linear Oligomers through Latticeâ€Controlled Azide–Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2012, 51, 4362-4366.	13.8	74
86	Regioselectivity among six secondary hydroxyl groups: selective acylation of the least reactive hydroxyl groups of inositol. Chemical Communications, 2012, 48, 2448.	4.1	15
87	Soft Optical Devices from Selfâ€Healing Gels Formed by Oil and Sugarâ€Based Organogelators. Angewandte Chemie - International Edition, 2011, 50, 8021-8024.	13.8	225
88	Selective determinants of inositol 1,4,5â€trisphosphate and adenophostin A interactions with type 1 inositol 1,4,5â€trisphosphate receptors. British Journal of Pharmacology, 2010, 161, 1070-1085.	5.4	27
89	Regioselective O-acylation of myo-inositol 1,3,5-orthoesters: dependence of regioselectivity on the stoichiometry of the base. Tetrahedron, 2009, 65, 2703-2710.	1.9	12
90	Total syntheses of cyclitol based natural products from myo-inositol: brahol and pinpollitol. Tetrahedron, 2009, 65, 3998-4006.	1.9	22

#	Article	IF	Citations
91	Activation of IP3 receptors by synthetic bisphosphate ligands. Chemical Communications, 2009, , 1204.	4.1	27
92	Efficient syntheses of optically pure chiro- and allo-inositol derivatives, azidocyclitols and aminocyclitols from myo-inositol. Tetrahedron, 2008, 64, 4072-4080.	1.9	20
93	Strength from weakness: CHâç'Ï€ stabilized conformational tuning of benzyl ethers and a consequent co-operative edge-to-face CHâç'Ï€ network. CrystEngComm, 2008, 10, 493.	2.6	27
94	2-Position Base-Modified Analogues of Adenophostin A as High-Affinity Agonists of the d-myo-Inositol Trisphosphate Receptor:  In Vitro Evaluation and Molecular Modeling. Journal of Organic Chemistry, 2008, 73, 1682-1692.	3.2	19
95	Rapid and efficient routes to phosphatidylinositol 3,4,5-trisphosphates via myo-inositol orthobenzoate. Tetrahedron Letters, 2007, 48, 1923-1926.	1.4	12
96	Guanophostin A: Synthesis and evaluation of a high affinity agonist of the d-myo-inositol 1,4,5-trisphosphate receptor. Chemical Communications, 2006, , 2015.	4.1	12
97	Resolution of synthetically useful myo-inositol derivatives using the chiral auxiliary O-acetylmandelic acid. Tetrahedron: Asymmetry, 2005, 16, 231-241.	1.8	9
98	Sulfonate protecting groups. Synthesis of O- and C-methylated inositols: d- and l-ononitol, d- and l-laminitol, mytilitol and scyllo-inositol methyl ether. Tetrahedron, 2005, 61, 4437-4446.	1.9	26
99	Solid and solution state conformations of $(\hat{A}\pm)$ -3-O-acetyl-1,2:4,5-di-O-isopropylidene-allo-inositol and $(\hat{A}\pm)$ -3-O-acetyl-1,2:4,5-di-O-isopropylidene-6-O-methyl-allo-inositol. Carbohydrate Research, 2005, 340, 2311-2318.	2.3	4
100	Establishment of the Structure of Pinpollitol by Total Synthesis of the Proposed Putative Structures. Synlett, 2005, 2005, 0769-0772.	1.8	9
101	Establishment of the Structure of Pinpollitol by Total Synthesis of the Proposed Putative Structure. Synlett, 2005, 2005, 1640-1490.	1.8	0
102	Short SOÂ-Â-Â-CO Contacts Associate Diastereomers of 2,4(6)-Di-O-benzoyl-6(4)-O-[(1S)-10-camphorsulfonyl]-myo-inositol 1,3,5-Orthoformate in Their Inclusion Complexes. Crystal Growth and Design, 2005, 5, 833-836.	3.0	12
103	Simple and Efficient Routes to Optically Activechiro- and allo-Inositol Derivatives from myo-Inositol. Synlett, 2004, 2004, 493-496.	1.8	O
104	Probing Gelation at the Molecular Level: Head-to-Tail Hydrogen-Bonded Self-Assembly of an Inositol-Based Organogelator. European Journal of Organic Chemistry, 2004, 2004, 4703-4709.	2.4	27
105	Regioselective Protection and Deprotection of Inositol Hydroxyl Groups. ChemInform, 2004, 35, no.	0.0	1
106	Is O-acetylmandelic acid a reliable chiral anisotropy reagent?. Tetrahedron: Asymmetry, 2004, 15, 3-7.	1.8	8
107	An efficient route to optically active inositol derivatives via the resolution of myo-inositol 1,3,5-orthoformate: a short synthesis of d-myo-inositol-4-phosphate. Tetrahedron: Asymmetry, 2004, 15, 1193-1198.	1.8	14
108	O-Acetylmandelic acid as a reliable chiral anisotropy reagent for the determination of absolute configuration of alcohols. Tetrahedron: Asymmetry, 2004, 15, 3357-3364.	1.8	22

#	Article	IF	CITATIONS
109	Total synthesis of the proposed structure of 'brahol' and the structural revision. Tetrahedron Letters, 2004, 45, 3197-3201.	1.4	9
110	Efficient routes to optically active azido-, amino-, di-azido- and di-amino-cyclitols with chiro- and allo-configuration from myo-inositol. Tetrahedron Letters, 2004, 45, 8367-8370.	1.4	11
111	Crystal structure, solid state and solution conformation of 1d-1,4-di-O-[(S)-O-acetylmandeloyl]-2,3:5,6-di-O-isopropylidene-myo-inositol. Carbohydrate Research, 2004, 339, 807-811.	2.3	7
112	Crystal structure of 1l-1,2:4,5-di-O-isopropylidene-allo-inositol; A comparison of its conformation in solid and solution states. Carbohydrate Research, 2004, 339, 1551-1555.	2.3	9
113	Solid and solution state conformation of 1l-1-O-acetyl-2,3:5,6-di-O-isopropylidene-chiro-inositol. Carbohydrate Research, 2004, 339, 1803-1807.	2.3	4
114	Topochemical Transketalization Reaction Driven by Hydrogen Bonding. Journal of the American Chemical Society, 2004, 126, 9174-9175.	13.7	23
115	Sulfonate Protecting Groups: Synthesis of D- and L-myo-Inositol-1,3,4,5-tetrakisphosphate Precursors by a Novel Silver(I) Oxide-Mediated O-Alkylation of 2,4(6)-Di-O-acyl-6(4)-O-sulfonyl-myo-Inositol 1,3,5-Orthoformate Derivatives Through Intramolecular Assistance of the Sulfonyl Group. European lournal of Organic Chemistry, 2003, 2003, 1035-1041.	2.4	17
116	A simple and practical resolution of 1,2:4,5-di-O-isopropylidene-myo-inositol. Tetrahedron: Asymmetry, 2003, 14, 1771-1774.	1.8	16
117	Regioselective Protection and Deprotection of Inositol Hydroxyl Groups. Chemical Reviews, 2003, 103, 4477-4504.	47.7	143
118	Cyclitol-Based Metal-Complexing Agents. Effect of the Relative Orientation of Oxygen Atoms in the Ionophoric Ring on the Cation-Binding Ability ofmyo-Inositol-Based Crown Ethers. Journal of Organic Chemistry, 2002, 67, 6884-6888.	3.2	23
119	Silver(i) oxide–silver halide mediated alcoholysis of O-benzoyl-myo-inositol 1,3,5-orthoformates: intramolecular assistance by the sulfonyl group. Perkin Transactions II RSC, 2002, , 358-365.	1.1	9
120	Sulfonate protecting groups. Regioselective sulfonylation of myo-inositol orthoestersâ€"improved synthesis of precursors of d- and l-myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4,5,6-pentakisphosphate and related derivatives. Carbohydrate Research, 2002, 337, 2399-2410.	2.3	32
121	A highly selective host–guest system formed and stabilized due to concerted halogen‥oxygen and C-H‥O non-bonded interactions: X-ray structures of racemic 1,2,3,4,5-penta-O-benzoyl-6-O-tosyl myo-inositol–dihalomethane (CH2X2, X = Cl and Br) inclusion complexes. Chemical Communications, 2001881-882.	4.1	29
122	Neutral complexing agents with a cyclitol core. Effect of the relative orientation of the sidearms and end groups on the cation binding ability of myo-inositol based podands. Perkin Transactions II RSC, 2001, , 2298-2302.	1.1	9
123	Sulfonate protecting groups. Regioselective O -sulfonylation of myo -inositol orthoesters. Tetrahedron Letters, 2001, 42, 3037-3039.	1.4	22
124	Regioselective O-acylation of myo-inositol 1,3,5-orthoesters: the role of acyl migration. Tetrahedron Letters, 2000, 41, 4185-4188.	1.4	25
125	Topochemical Ene–Azide Cycloaddition Reaction. Angewandte Chemie, 0, , .	2.0	8
126	Secondary Structure Tuning of a Pseudoprotein Between βâ€Meander and αâ€Helical Forms in the Solidâ€State. Angewandte Chemie, 0, , .	2.0	6

#	Article	IF	CITATIONS
127	Topochemical Synthesis of a Heterochiral Peptide Polymer in Different Polymorphic Forms from Crystals and Aerogels. Angewandte Chemie, 0, , .	2.0	3
128	Topochemical Postulates: Are They Relevant for Topochemical Reactions Occurring at Elevated Temperatures?. Angewandte Chemie, 0, , .	2.0	7