List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313375/publications.pdf Version: 2024-02-01

DONG-LIANC MO

#	Article	IF	CITATIONS
1	Asymmetric Ring-Opening Reaction of Oxabicyclic Alkenes with Aryl Boronic Acids Catalyzed by P-Containing Palladacycles. Organic Letters, 2008, 10, 3689-3692.	4.6	82
2	Preparation and Rearrangement of <i>N</i> -Vinyl Nitrones: Synthesis of Spiroisoxazolines and Fluorene-Tethered Isoxazoles. Organic Letters, 2012, 14, 5180-5183.	4.6	66
3	New developments of ketonitrones in organic synthesis. Organic Chemistry Frontiers, 2016, 3, 116-130.	4.5	61
4	Synthesis of α,β-Unsaturated <i>N</i> -Aryl Ketonitrones from Oximes and Diaryliodonium Salts: Observation of a Metal-Free <i>N</i> -Arylation Process. Journal of Organic Chemistry, 2015, 80, 10098-10107.	3.2	56
5	Copperâ€Catalyzed Rearrangement of <i>N</i> â€Aryl Nitrones into Epoxyketimines. Angewandte Chemie - International Edition, 2013, 52, 6722-6725.	13.8	54
6	Solvent ontrolled Bifurcated Cascade Process for the Selective Preparation of Dihydrocarbazoles or Dihydropyridoindoles. Chemistry - A European Journal, 2014, 20, 13217-13225.	3.3	52
7	The reaction of terminal alkynes with PhI(OAc)2: a convenient procedure for the preparation of α-acyloxy ketones. Tetrahedron Letters, 2009, 50, 5578-5581.	1.4	47
8	Palladacycle-Catalyzed Reaction of Bicyclic Alkenes with Terminal Ynones: Regiospecific Synthesis of Polysubstituted Furans. Organic Letters, 2012, 14, 5756-5759.	4.6	47
9	Mitochondrial-Targeted and Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Monoamine Oxidase A Activity in Hepatic Fibrosis. ACS Sensors, 2020, 5, 943-951.	7.8	46
10	Copper-Catalyzed Selective <i>N</i> -Vinylation of 3-(Hydroxyimino)indolin-2-ones with Alkenyl Boronic Acids: Synthesis of <i>N</i> -Vinyl Nitrones and Spirooxindoles. Journal of Organic Chemistry, 2017, 82, 6417-6425.	3.2	45
11	Single‣tep Modular Synthesis of Unsaturated Morpholine <i>N</i> â€Oxides and Their Cycloaddition Reactions. Angewandte Chemie - International Edition, 2017, 56, 3059-3063.	13.8	43
12	Preparation of αâ€Oxygenated Ketones by the Dioxygenation of Alkenyl Boronic Acids. Angewandte Chemie - International Edition, 2012, 51, 7799-7803.	13.8	42
13	Phthalazino[1,2- <i>b</i>]quinazolinones as p53 Activators: Cell Cycle Arrest, Apoptotic Response and Bak–Bcl-xl Complex Reorganization in Bladder Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 6853-6866.	6.4	42
14	Palladacycle-Catalyzed Highly Efficient Kinetic Resolution of 1-Hydroxy-2-aryl-1,2-dihydronaphthalenes via Dehydration Reaction. Organic Letters, 2008, 10, 5337-5340.	4.6	39
15	Construction of 2,3-quaternary fused indolines from alkynyl tethered oximes and diaryliodonium salts through a cascade strategy of <i>N</i> -arylation/cycloaddition/[3,3]-rearrangement. Green Chemistry, 2017, 19, 5761-5766.	9.0	35
16	Catalytic Asymmetric Synthesis of Dihydropyrido[1,2â€ <i>a</i>]indoles from Nitrones and Allenoates. Angewandte Chemie - International Edition, 2016, 55, 9183-9186.	13.8	34
17	Iron(III)/Copper(II)-Cocatalyzed Cycloaddition/[3,3]-Rearrangement/N–O Bond Cleavage To Prepare Polysubstituted Pyrrolizines from <i>N</i> -Vinyl-1±,î²-Unsaturated Nitrones and Activated Alkynes. Organic Letters, 2019, 21, 481-485.	4.6	34
18	Switch of Addition and Ring-Opening Reactions of Oxabicyclic Alkenes with Terminal Alkynes by sp ² -C,P- and sp ³ -C,P-Palladacycle Catalysis. Organometallics, 2013, 32, 4465-4468.	2.3	33

#	Article	IF	CITATIONS
19	Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure-based design, synthesis, and bioactive evaluation inÂvitro and inÂvivo. European Journal of Medicinal Chemistry, 2019, 165, 293-308.	5.5	33
20	Synthesis of <i>N</i> -Styrenyl Amidines from α,β-Unsaturated Nitrones and Isocyanates through CO ₂ Elimination and Styrenyl Migration. Organic Letters, 2014, 16, 3696-3699.	4.6	32
21	A facile synthesis of 2,5-disubstituted oxazoles via a copper-catalyzed cascade reaction of alkenes with azides. Chemical Communications, 2015, 51, 17772-17774.	4.1	32
22	Synthesis of <i>N</i> -Aryl Oxindole Nitrones through a Metal-Free Selective <i>N</i> -Arylation Process. Journal of Organic Chemistry, 2017, 82, 3232-3238.	3.2	31
23	Formal [7 + 2] Cycloaddition of Arynes with <i>N</i> -Vinyl-α,β-Unsaturated Nitrones: Synthesis of Benzoxazonines and Their N–O Bond Cleavage. Organic Letters, 2018, 20, 4571-4574.	4.6	31
24	Copper-mediated synthesis of <i>N</i> -alkenyl-α,β-unsaturated nitrones and their conversion to tri- and tetrasubstituted pyridines. Beilstein Journal of Organic Chemistry, 2015, 11, 2097-2104.	2.2	30
25	Iodine(III) Reagentâ€Mediated Intramolecular Amination of 2â€Alkenylanilines to Prepare Indoles. Advanced Synthesis and Catalysis, 2018, 360, 1919-1925.	4.3	30
26	Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C–C Bond Cleavage of 2-Arylindoles. Organic Letters, 2018, 20, 3527-3530.	4.6	30
27	2-Styryl-4-aminoquinazoline derivatives as potent DNA-cleavage, p53-activation and inÂvivo effective anticancer agents. European Journal of Medicinal Chemistry, 2020, 186, 111851.	5.5	30
28	Gold-Catalyzed Selective 6- <i>exo-dig</i> and 7- <i>endo-dig</i> Cyclizations of Alkyn-Tethered Indoles To Prepare Rutaecarpine Derivatives. Journal of Organic Chemistry, 2018, 83, 2006-2017.	3.2	29
29	Gold(III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused Quinazolinone Scaffolds. Journal of Organic Chemistry, 2018, 83, 6719-6727.	3.2	29
30	An Yb(OTf) ₃ and visible light relay catalyzed [3 + 2] cycloaddition/[3,3]-rearrangement/[4 + 2] cycloaddition in one pot to prepare oxazonine-fused endoperoxides. Green Chemistry, 2020, 22, 3827-3834.	9.0	28
31	Tandem C–O and C–N Bonds Formation Through O-Arylation and [3,3]-Rearrangement by Diaryliodonium Salts: Synthesis of <i>N</i> -Aryl Benzo[1,2,3]triazin-4(1H)-one Derivatives. Journal of Organic Chemistry, 2015, 80, 11175-11183.	3.2	27
32	Recent Advances in Chan-Evans-Lam Coupling Reaction. Chinese Journal of Organic Chemistry, 2017, 37, 1069.	1.3	27
33	The Applications of Palladacycles as Transition-Metal Catalysts in Organic Synthesis. Synlett, 2014, 25, 2686-2702.	1.8	25
34	Cycloaddition of Fluorenone <i>N</i> -Aryl Nitrones with Methylenecyclopropanes and Sequential 1,3-Rearrangement: An Entry to Synthesis of Spirofluorenylpiperidin-4-ones. Journal of Organic Chemistry, 2017, 82, 502-511.	3.2	25
35	A copper-catalyzed diastereoselective O-transfer reaction of <i>N</i> -vinyl-1±,β-unsaturated nitrones with ketenes into γ-lactones through [5 + 2] cycloaddition and N–O bond cleavage. Green Chemistry, 2019, 21, 6567-6573.	9.0	25
36	Iron(<scp>iii</scp>)-catalyzed selective N–O bond cleavage to prepare tetrasubstituted pyridines and 3,5-disubstituted isoxazolines from <i>N</i> -vinyl-α,β-unsaturated ketonitrones. Green Chemistry, 2018, 20, 2722-2729.	9.0	24

#	Article	IF	CITATIONS
37	Catalytic Asymmetric Synthesis of Dihydropyrido[1,2―a]indoles from Nitrones and Allenoates. Angewandte Chemie, 2016, 128, 9329-9332.	2.0	23
38	Palladacycle-Catalyzed Methylenecyclopropanation of Bicyclic Alkenes with Propiolates. Journal of Organic Chemistry, 2013, 78, 11470-11476.	3.2	22
39	Diastereoselective Synthesis of Nineâ€Membered Heterocycles <i>via</i> the Cycloaddition and Sequential Rearrangement of <i>N</i> â€Vinyl Nitrones with Isocyanates. Advanced Synthesis and Catalysis, 2017, 359, 3545-3550.	4.3	22
40	Substituent Effects of 2-Pyridones on Selective O-Arylation with Diaryliodonium Salts: Synthesis of 2-Aryloxypyridines under TransitionÂ-Metal-Free Conditions. Synthesis, 2018, 50, 1699-1710.	2.3	22
41	Cryptolepine and aromathecin based mimics as potent G-quadruplex-binding, DNA-cleavage and anticancer agents: Design, synthesis and DNA targeting-induced apoptosis. European Journal of Medicinal Chemistry, 2019, 169, 144-158.	5.5	22
42	Catalyst-controlled formal [4 + 1] annulation of <i>N</i> -vinyl fluorenone nitrones and allenoates to prepare spirofluorenylpyrrolines. Organic Chemistry Frontiers, 2020, 7, 1520-1526.	4.5	22
43	Metalâ€Free Synthesis of Polysubstituted Pyrroles by (Diacetoxyiodo)Benzeneâ€Mediated Cascade Reaction of 3â€Alkynyl Amines. Chemistry - an Asian Journal, 2011, 6, 3200-3204.	3.3	21
44	(Diacetoxyiodo)benzene-Mediated Reaction of Ethynylcarbinols: Entry to α,α′-Diacetoxy Ketones and Glycerol Derivatives. Journal of Organic Chemistry, 2015, 80, 6496-6501.	3.2	21
45	Synthesis of <i>N</i> -(2-Hydroxyaryl)benzotriazoles via Metal-Free <i>O</i> -Arylation and N–O Bond Cleavage. Journal of Organic Chemistry, 2016, 81, 8014-8021.	3.2	21
46	Copperâ€Catalyzed [3+2] Cycloaddition and Interrupted Fischer Indolization to Prepare Polycyclic Furo[2,3â€b]indolines from <i>N</i> â€Aryl Isatin Nitrones and Methylenecyclopropanes. Advanced Synthesis and Catalysis, 2019, 361, 965-970.	4.3	20
47	Silver(<scp>i</scp>)-catalyzed selective hydroalkoxylation of C2-alkynyl quinazolinones to synthesize quinazolinone-fused eight-membered N,O-heterocycles. Organic Chemistry Frontiers, 2020, 7, 2055-2062.	4.5	20
48	Synthesis of Furo[3,2- <i>b</i>]quinolines and Furo[2,3- <i>b</i> :4,5- <i>b′</i>]diquinolines through [4 + 2] Cycloaddition of Aza- <i>o</i> -Quinone Methides and Furans. Journal of Organic Chemistry, 2020, 85, 3059-3070.	3.2	20
49	Tandem C–N Bond Formation through Condensation and Metal-Free <i>N</i> -Arylation: Protocol for Synthesizing Diverse Functionalized Quinoxalines. Journal of Organic Chemistry, 2017, 82, 4407-4414.	3.2	18
50	Copper atalyzed Carbonyl Group Controlled Coupling of Isatin Oximes with Arylboronic Acids To Prepare <i>N</i> â€Aryloxindole Nitrones. European Journal of Organic Chemistry, 2018, 2018, 150-159.	2.4	18
51	Metal-free graphene oxide-catalyzed aza-semipinacol rearrangement to prepare 2-(indol-2-yl)phenols and benzofuro[3,2- <i>b</i> jindolines containing quaternary carbon centers. Green Chemistry, 2020, 22, 404-410.	9.0	17
52	Yb(OTf) 3 â€Catalyzed Cycloaddition/[3,3]â€Rearrangement of N â€Vinylâ€Î±,βâ€Unsaturated Ketonitrones with Methylenecyclopropâ€anes: Stereoselective Synthesis of Nineâ€Membered Nitrogen Heterocycles. Advanced Synthesis and Catalysis, 2020, 362, 478-486.	4.3	16
53	Copper-catalyzed tri- or tetrafunctionalization of alkenylboronic acids to prepare tetrahydrocarbazol-1-ones and indolo[2,3- <i>a</i>]carbazoles. Green Chemistry, 2020, 22, 5815-5821.	9.0	16
54	Synthesis and antitumor evaluation of 2,3-diarylbenzofuran derivatives on HeLa cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1660-1664.	2.2	15

#	Article	IF	CITATIONS
55	Baseâ€Free Selective <i>O</i> â€Arylation and Sequential [3,3]â€Rearrangement of Amidoximes with Diaryliodonium Salts: Synthesis of 2â€&ubstituted Benzoxazoles. Advanced Synthesis and Catalysis, 2017, 359, 4129-4135.	4.3	15
56	Synthesis of 1â€Vinyl/Arylbenzotriazole 3â€Oxides through a Copperâ€Mediated C–N Bond Coupling Reaction. Advanced Synthesis and Catalysis, 2017, 359, 2741-2746.	4.3	15
57	Nickel(II)-Catalyzed [5 + 1] Annulation of 2-Carbonyl-1-propargylindoles with Hydroxylamine To Synthesize Pyrazino[1,2- <i>a</i>]indole-2-oxides in Water. Journal of Organic Chemistry, 2019, 84, 9859-9868.	3.2	15
58	Recent Advances in Copper-Catalyzed N-O Cleavage Strategy. Chinese Journal of Organic Chemistry, 2019, 39, 2989.	1.3	15
59	Gold(I)â€Catalyzed Selective Cyclization and 1,2â€Shift to Prepare Pseudorutaecarpine Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 787-793.	4.3	15
60	lsobutyl Nitriteâ€Mediated Synthesis of Quinoxalines through Double Câ^'H Bond Amination of <i>N</i> â€Aryl Enamines. Advanced Synthesis and Catalysis, 2018, 360, 4446-4451.	4.3	14
61	Synthesis of Spirofluorenylâ€ <i>β</i> ‣actams through Cycloaddition and Ring Contraction from <i>N</i> â€Aryl Fluorenone Nitrones and Methylenecyclopropanes. Advanced Synthesis and Catalysis, 2019, 361, 3965-3973.	4.3	13
62	Recent advances in the synthesis of 2,3-fused quinazolinones. Organic and Biomolecular Chemistry, 2022, 20, 6293-6313.	2.8	13
63	Advances on the Synthesis and Application of <i>α</i> , <i>β</i> -Unsaturated Nitrones. Chinese Journal of Organic Chemistry, 2021, 41, 4535.	1.3	12
64	Synthesis of Spirooxindoleâ€Benzo[d]oxazoles and Dihydrobenzofurans through Cycloaddition and Rearrangement of <i>N</i> â€Vinyl Nitrones and Arynes. Advanced Synthesis and Catalysis, 2022, 364, 1409-1414.	4.3	12
65	Transition-metal-free synthesis of thiocyanato- or nitro-arenes through diaryliodonium salts. Synthetic Communications, 2016, 46, 963-970.	2.1	11
66	A Tunable Route to Prepare α,βâ€Unsaturated Esters and α,βâ€Unsaturatedâ€Î³â€Keto Esters through Copperâ€Catalyzed Coupling of Alkenyl Boronic Acids with Phosphorus Ylides. Advanced Synthesis and Catalysis, 2018, 360, 1510-1516.	4.3	11
67	Visible Light Promoted Chan‣am Reaction and Cycloaddition to Prepare Chromeno[4,3â€ɛ]isoxazolidines in Oneâ€Pot Reaction. Advanced Synthesis and Catalysis, 2021, 363, 4575-4581.	4.3	11
68	Copperâ€Mediated Difunctionalization of Alkenylboronic Acids: Synthesis of É'â€imino Ketones. Advanced Synthesis and Catalysis, 2018, 360, 3254-3259.	4.3	10
69	3-(Benzo[<i>d</i>]thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor <i>via</i> DNA intercalation: design, synthesis, and antitumor activities. New Journal of Chemistry, 2020, 44, 11203-11214.	2.8	10
70	Synthesis of β-acetoxy alcohols by PhI(OAc) ₂ -mediated metal-free diastereoselective β-acetoxylation of alcohols. Organic and Biomolecular Chemistry, 2016, 14, 6795-6803.	2.8	9
71	Copper(<scp>i</scp>)-catalyzed [4 + 2] cycloaddition of aza- <i>ortho</i> -quinone methides with bicyclic alkenes. Organic and Biomolecular Chemistry, 2021, 19, 3379-3383.	2.8	9
72	Synthesis of Chiral Nineâ€Membered Nâ€Heterocycles through Silver(I)â€Promoted Cycloaddition and Rearrangement from <i>N</i> â€Vinylâ€Ì±,βâ€Unsaturated Nitrones with Chiral 3â€Propioloyloxazolidinâ€2 Advanced Synthesis and Catalysis, 2022, 364, 500-505.)nes4.3	9

#	Article	IF	CITATIONS
73	Singleâ€Step Modular Synthesis of Unsaturated Morpholine N â€Oxides and Their Cycloaddition Reactions. Angewandte Chemie, 2017, 129, 3105-3109.	2.0	8
74	Synthesis of spiroindolenine-3,3′-pyrrolo[2,1- <i>b</i>]quinazolinones through gold(<scp>i</scp>)-catalyzed dearomative cyclization of <i>N</i> -alkynyl quinazolinone-tethered indoles. Organic and Biomolecular Chemistry, 2022, 20, 2069-2074.	2.8	8
75	Recent Advances in the Arylation and Alkenylation of N–O Bonds. Synthesis, 2017, 49, 933-959.	2.3	7
76	Synthesis of chromeno[4,3- <i>b</i>]quinolines and spirobenzofuran-3,3′-quinolines through silver-mediated Appel reaction/C–Br bond cleavage/double selective rearrangement sequence. Organic Chemistry Frontiers, 2019, 6, 2334-2338.	4.5	7
77	Nickel(II)-Catalyzed Oxygen Transfer Reaction of <i>N</i> -Vinyl Nitrones to Prepare 2-(Pyridin-2-yl)ethanols. Organic Letters, 2020, 22, 8446-8450.	4.6	7
78	Nickel(II)-Catalyzed [3 + 2] Cycloaddition of Nitrones and Allenoates to Access <i>N</i> -Vinylindoles and <i>N</i> -Vinylpyrroles. Organic Letters, 2021, 23, 7482-7486.	4.6	7
79	DBUâ€Promoted 6ï€â€Azaelectrocyclization and Hydrogenâ€Migration to Prepare 6â€Alkyl Pyridine <i>N</i> â€Oxides from <i>N</i> â€Vinylâ€ <i>α</i> , <i>î²</i> â€Unsaturated Nitrones. Advanced Synthesis and Catalysis, 2022, 364, 1671-1676.	4.3	7
80	Chiral P-Containing Palladacycle-Catalyzed Asymmetric Ring-Opening Reactions of Oxabicyclic Alkenes with Alkenyl Boronic Acids. Synlett, 2011, 2011, 943-946.	1.8	6
81	Synthesis of α-oxygenated ketones and substituted catechols via the rearrangement of N-enoxy- and N-aryloxyphthalimides. Tetrahedron, 2017, 73, 4125-4137.	1.9	6
82	Synthesis of α-aminooxy amides through [3 + 3] cycloaddition and Sc(OTf) ₃ -catalyzed double C–N bond cleavage in a one-pot reaction. Organic and Biomolecular Chemistry, 2020, 18, 8209-8218.	2.8	6
83	Chan–Lam Reaction and Lewis Acid Promoted 1,3-Rearrangement of N–O Bonds to Prepare <i>N</i> -(2-Hydroxyaryl)pyridin-2-ones. Organic Letters, 0, , .	4.6	6
84	Synthesis of Spirofluorenyl-1,2,4-oxadiazinan-5-ones through Metal-Free [3+3] Cycloaddition of N-Vinyl Fluorenone Nitrones with Aza-oxyallyl Cations. Synthesis, 2020, 52, 424-432.	2.3	5
85	An iron(<scp>iii</scp>)-catalyzed dehydrogenative cross-coupling reaction of indoles with benzylamines to prepare 3-aminoindole derivatives. Green Chemistry, 2021, 23, 9610-9616.	9.0	5
86	3-Arylamino-quinoxaline-2-carboxamides inhibit the PI3K/Akt/mTOR signaling pathways to activate P53 and induce apoptosis. Bioorganic Chemistry, 2021, 114, 105101.	4.1	4
87	Palladacycle-Catalyzed Regioselective Heck Reaction Using Diaryliodonium Triflates and Aryl Iodides. Organic Letters, 2022, 24, 663-667.	4.6	4
88	MnSO ₄ -promoted S–O bond cleavage for synthesizing functionalized sulfonium ylides from activated alkynes and sulfoxides. Organic and Biomolecular Chemistry, 2022, 20, 1656-1661.	2.8	4
89	Cinchonidine-Catalyzed Synthesis of Oxazabicyclo[4.2.1]nonanones from <i>N</i> -Aryl- <i>α,β</i> -unsaturated Nitrones and 1-Ethynylnaphthalen-2-ols. Organic Letters, 2022, 24, 4104-4108.	4.6	4
90	Preparation of 2-(3-Methyleneindolin-2-yl)phenols via Sodium Hydride Promoted C–C/C–O Bond Cleavage. Synthesis, 2019, 51, 3477-3484.	2.3	3

#	ARTICLE	IF	CITATIONS
91	Cover Feature: Copper-Catalyzed Carbonyl Group Controlled Coupling of Isatin Oximes with Arylboronic Acids To Prepare N -Aryloxindole Nitrones (Eur. J. Org. Chem. 2/2018). European Journal of Organic Chemistry, 2018, 2018, 138-138.	2.4	0