Ozdal Boyraz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313314/publications.pdf

Version: 2024-02-01

331670 206112 2,440 109 21 48 citations h-index g-index papers 110 110 110 1826 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ranging and velocimetry measurements by phase-based MTCW lidar. Optics Express, 2021, 29, 13552.	3.4	15
2	Mechanical design and thermal analysis of a 12U CubeSat MTCW lidar based optical measurement system for littoral ocean dynamics. , 2021, , .		4
3	Metalens wide-angle receiver for free space optical communications. , 2021, , .		3
4	High Sensitivity Long-Wave Infrared Detector Design Based on Integrated Plasmonic Absorber and VOâ,, Nanobeam. IEEE Journal of Quantum Electronics, 2021, 57, 1-11.	1.9	3
5	Wireless Communication Technologies in Omnidirectional CubeSat Crosslink: Feasibility Study and Performance Analysis. IEEE Journal on Miniaturization for Air and Space Systems, 2021, 2, 157-166.	2.7	6
6	Enhancing the multi-tone continuous-wave lidar with phase detection. , $2021, \ldots$		3
7	Optoelectronic Readout of STT-RAM Based on Plasmon Drag Effect. IEEE Journal of Quantum Electronics, 2021, 57, 1-7.	1.9	O
8	Optoelectronic Readout of STT-RAM Memory Cells Using Plasmon Drag Effect. , 2021, , .		o
9	Single-shot ranging and velocimetry with a CW lidar far beyond the coherence length of the CW laser. Optics Express, 2021, 29, 42343.	3.4	14
10	Editorial for the Special Issue on Silicon Photonics Bloom. Micromachines, 2020, 11, 670.	2.9	o
11	Spectral dynamics on saturable absorber in mode-locking with time stretch spectroscopy. Scientific Reports, 2020, 10, 14460.	3.3	12
12	Immunity of nanoscale magnetic tunnel junctions with perpendicular magnetic anisotropy to ionizing radiation. Scientific Reports, 2020, 10, 10220.	3. 3	19
13	Omnidirectional Optical Crosslinks for CubeSats: Transmitter Optimization. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 4556-4566.	4.7	6
14	Realization of Omnidirectional CubeSat Crosslink by Wavelength-Selective Optical Transceiver. IEEE Journal on Miniaturization for Air and Space Systems, 2020, $1,47-55$.	2.7	7
15	Effect of magnesium oxide adhesion layer on resonance behavior of plasmonic nanostructures. Applied Physics Letters, 2020, $116, \ldots$	3.3	7
16	Impact of receiver architecture on small satellite optical link in the presence of pointing jitter. Applied Optics, 2020, 59, 10177.	1.8	11
17	Graphene-incorporated plasmo-thermomechanical infrared radiation detection. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 774.	2.1	2
18	Simultaneous ranging and velocimetry with multi-tone continuous wave lidar. Optics Express, 2020, 28, 17241.	3.4	10

#	Article	IF	Citations
19	Selective and efficient infrared detection by plasmonically heated vanadium-dioxide nanowire. , 2020, , .		4
20	Multi Tone Continuous Wave Lidar. , 2019, , .		2
21	Realization of Multitone Continuous Wave Lidar. IEEE Photonics Journal, 2019, 11, 1-10.	2.0	13
22	Array of symmetric nanohole dimers with high sensitivity for detection of changes in an STT-RAM ultrathin dielectric layer. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 3090.	2.1	3
23	Graphene-coated Suspended Metallic Nanostructures for Fast and Sensitive Optomechanical Infrared Detection., 2019,,.		2
24	A Basic Approach for Speed Profiling of Alternating Targets with Photonic Doppler Velocimetry. , 2019, , .		4
25	Array of Symmetric Nanohole Dimers for STT-RAM Ultrathin Layer Sensing. , 2019, , .		2
26	Physical Layer Cryptographic Key Generation by Exploiting PMD of an Optical Fiber Link. Journal of Lightwave Technology, 2018, 36, 5903-5911.	4.6	48
27	Giant Resonance and Anomalous Quality Factor Scaling in Degenerate Band Edge Coupled Resonator Optical Waveguides. Journal of Lightwave Technology, 2018, 36, 3030-3039.	4.6	24
28	Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy. Optics Letters, 2018, 43, 1862.	3.3	32
29	Plasmo-thermomechanical radiation detector with on-chip optical readout. Optics Express, 2018, 26, 29638.	3.4	7
30	Omnidirectional optical transceiver design techniques for multi-frequency full duplex CubeSat data communication. , 2018, , .		3
31	Inter-satellite omnidirectional optical communicator for remote sensing. , 2018, , .		3
32	On-Chip Bimetallic Plasmo-Thermomechanical Detectors for Mid-Infrared Radiation. IEEE Photonics Technology Letters, 2017, 29, 1459-1462.	2.5	7
33	Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control. Journal of Lightwave Technology, 2017, 35, 10-18.	4.6	6
34	Polarization Mode Dispersion-Based Physical Layer Key Generation for Optical Fiber Link Security., 2017,,.		11
35	A Physical Layer Security Key Generation Technique for Inter-Vehicular Visible Light Communication. , 2017, , .		2
36	Plasmonic detection of possible defects in multilayer nanohole array consisting of essential materials in simplified STT-RAM cell., 2017,,.		1

3

#	Article	IF	CITATIONS
37	Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide. Optics Express, 2016, 24, 28337.	3.4	20
38	Experimental Demonstration of Directive Si3N4 Optical Leaky Wave Antennas With Semiconductor Perturbations. Journal of Lightwave Technology, 2016, 34, 4864-4871.	4.6	16
39	Electronic control of optical tweezers using space-time-wavelength mapping. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 313.	2.1	1
40	Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles. , 2015 , , .		3
41	Uniform and non uniform optical leaky-wave antennas for field shaping. , 2015, , .		0
42	Experimental demonstration of directive Si3N4optical leaky wave antennas with semiconductor perturbations at near infrared frequencies. , 2015 , , .		3
43	V-pi reduction by using modulation index booster (MiBo) in RF links. , 2015, , .		1
44	Electronically-controlled optical tweezing using space-time-wavelength mapping., 2015,,.		1
45	Optical Leaky Wave Antenna Experiment Demonstration and Electronic Modulation Investigation. , 2015, , .		2
46	Demonstration of <inline-formula> <tex-math notation="TeX">\$V_{pi}\$</tex-math></inline-formula> Reduction in Electrooptic Modulators Using Modulation Instability. IEEE Photonics Journal, 2014, 6, 1-9.	2.0	4
47	Optical leaky-wave antenna integrated in ring resonator. , 2014, , .		2
48	Phase-gradient gap-plasmon metasurface based blazed grating for real time dispersive imaging. Applied Physics Letters, 2014, 104, .	3.3	46
49	Infrared polarizing reflectarray metasurfaces. , 2014, , .		2
50	Fast Dispersive Laser Scanner by Using Digital Micro Mirror Arrays. Journal of Micro and Nano-Manufacturing, $2014, 2, \ldots$	0.7	3
51	Theory of a Directive Optical Leaky Wave Antenna Integrated into a Resonator and Enhancement of Radiation Control. Journal of Lightwave Technology, 2014, 32, 1741-1749.	4.6	21
52	Optical leaky wave antennas integrated with resonator topologies. , 2014, , .		0
53	Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors. Optics Communications, 2014, 313, 186-194.	2.1	76
54	Fast Arbitrary Waveform Generation by Using Digital Micromirror Arrays. IEEE Photonics Journal, 2013, 5, 5500207-5500207.	2.0	12

#	Article	IF	CITATIONS
55	Fast Dispersive Laser Scanner by Using Digital Micro Mirror Arrays., 2013,,.		1
56	Concept of an optical leaky-wave antenna embedded in a Fabry-P& #x00E9; rot resonator., 2013,,.		1
57	Nonlinear Optics in Silicon. Series in Optics and Optoelectronics, 2013, , 197-248.	0.0	2
58	Analytical study on arbitrary waveform generation by MEMS micro mirror arrays. Optics Express, 2012, 20, 27542.	3.4	8
59	Fast arbitrary waveform generation by using digital micro-mirror arrays. , 2012, , .		1
60	An optical leaky wave antenna with Si perturbations inside a resonator for enhanced optical control of the radiation. Optics Express, 2012, 20, 21305.	3.4	31
61	Radiation properties of an integrated optical leaky wave antenna with periodic silicon perturbations., 2012,,.		O
62	Enhancing radiation control of an optical leaky wave antenna in a resonator. Proceedings of SPIE, 2012, , .	0.8	2
63	Silicon-based optical leaky wave antenna with narrow beam radiation. Optics Express, 2011, 19, 8735.	3.4	69
64	Noise Performance of Time Stretch System with Distributed and Discrete Amplifiers. , 2011, , .		0
65	Control of the radiation of a silicon-based optical leaky wave antenna through optical pumping. , 2011, , .		3
66	An optical leaky wave antenna with silicon perturbations for electronic control. Proceedings of SPIE, 2011, , .	0.8	5
67	Erbium-based plasmonic-assisted vertical emitter., 2011,,.		O
68	Electrically Controlled Pulse Compression Using a Silicon Waveguide. , 2011, , .		0
69	Silicon-based ultra-wide discrete band conversion. Proceedings of SPIE, 2010, , .	0.8	O
70	Discrete parametric band conversion in silicon for mid-infrared applications. Optics Express, 2010, 18, 21981.	3.4	57
71	Performance Evaluation of Nondegenerate Wavelength Conversion in a Silicon Nanowire Waveguide. Journal of Lightwave Technology, 2010, , .	4. 6	5
72	Broadband Wavelength Conversion by Nondegenerate Four-Wave Mixing in a Silicon-On-Insulator Waveguide. , 2010, , .		1

#	Article	IF	Citations
73	Real-time optical imaging and tracking of micron-sized particles. Optics Communications, 2009, 282, 4672-4675.	2.1	84
74	Silicon based optical pulse shaping and characterization. , 2009, , .		6
75	Pump to Signal RIN Transfer in Silicon Raman Amplifiers. , 2009, , .		O
76	Nanoscale signal regeneration. Nature Photonics, 2008, 2, 12-13.	31.4	7
77	Influence of Pump-to-Signal RIN Transfer on Noise Figure in Silicon Raman Amplifiers. IEEE Photonics Technology Letters, 2008, 20, 2021-2023.	2.5	14
78	Dual-Wavelength Mode-Locked Fiber Laser With an Intracavity Silicon Waveguide. IEEE Photonics Technology Letters, 2008, 20, 1184-1186.	2.5	11
79	Noise Figure of Silicon Raman Amplifiers. Journal of Lightwave Technology, 2008, 26, 847-852.	4.6	26
80	Gain and noise characteristics of high-bit-rate silicon parametric amplifiers. Optics Express, 2008, 16, 13122.	3.4	54
81	High-Repetition-Rate Pulsed-Pump Optical Parametric Amplification in Silicon Waveguides. , 2008, , .		0
82	Dual-wavelength mode-locked laser in silicon. , 2008, , .		0
83	Laser modelocking and dual wavelength lasing in silicon. , 2008, , .		0
84	Ultrafast pulse characterization by cross-phase modulation in silicon waveguide. , 2008, , .		1
85	Noise figure of high-repetition-rate optical parametric amplifiers in silicon. , 2008, , .		0
86	Effect of TPA and FCA Interplay on Pulse Compression in Silicon. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
87	Femtosecond real-time single-shot digitizer. Applied Physics Letters, 2007, 91, 161105.	3.3	121
88	An All-fiber Tunable Polarization-Dependent Loss Element. , 2007, , .		0
89	Influence of nonlinear loss competition on pulse compression and nonlinear optics in silicon. Applied Physics Letters, 2007, 91, 201115.	3.3	13
90	Pulse compression and modelocking by using TPA in silicon waveguides. Optics Express, 2007, 15, 6500.	3.4	56

#	Article	IF	CITATIONS
91	Pulse Compression and Modelocking by Using TPA in Silicon Waveguides. , 2007, , .		O
92	Acoustooptic Coherent Mode Coupling in Polarization-Maintaining Fiber and Its Application as a Variable-Polarization-Dependent Loss Element. IEEE Photonics Technology Letters, 2007, 19, 665-667.	2.5	6
93	Performance analysis of a FTTH link utilizing asymmetric data transmission. Optics Communications, 2007, 280, 431-434.	2.1	1
94	Demonstration of CW Raman gain with zero electrical power dissipation in p-i-n silicon waveguides. , 2006, , .		4
95	Triggerable Continuum Source for Single-shot Ultra-fast Applications. , 2006, , .		0
96	Silicon Raman laser, amplifier, and wavelength converter (Keynote Paper)., 2005,,.		1
97	Scaling laws of nonlinear silicon nanophotonics. , 2005, , .		8
98	Silicon Raman amplifiers lasers and their applications. , 2005, , .		2
99	Optical continuum generation on a silicon chip. , 2005, , .		1
100	Tera-sample per second real-time waveform digitizer. Applied Physics Letters, 2005, 87, 241116.	3.3	32
101	Demonstration of directly modulated silicon Raman laser. Optics Express, 2005, 13, 796.	3.4	92
102	Raman amplification and lasing in SiGe waveguides. Optics Express, 2005, 13, 2459.	3.4	42
103	Silicon Raman Laser., 2005,,.		0
104	Silicon and Silicon-Germanium Raman Laser. , 2005, , .		0
105	Self-phase-modulation induced spectral broadening in silicon waveguides. Optics Express, 2004, 12, 829.	3.4	138
106	All optical switching and continuum generation in silicon waveguides. Optics Express, 2004, 12, 4094.	3.4	223
107	Demonstration of a silicon Raman laser. Optics Express, 2004, 12, 5269.	3.4	730
108	Demonstration of 11dB fiber-to-fiber gain in a silicon Raman amplifier. IEICE Electronics Express, 2004, 1, 429-434.	0.8	63

#	Article	IF	CITATIONS
109	Observation of simultaneous Stokes and anti-Stokes emission in a silicon Raman laser. IEICE Electronics Express, 2004, 1, 435-441.	0.8	9