
Orlando Arrieta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dataâ€driven dualâ€rate cascade control and application to pitch angle control of UAV. Asian Journal of Control, 2023, 25, 54-65.	3.0	4
2	Multiobjective Optimization. Advances in Industrial Control, 2021, , 41-67.	0.5	0
3	Industrial Application Examples. Advances in Industrial Control, 2021, , 115-148.	0.5	0
4	Application of the Multiobjective Approach. Advances in Industrial Control, 2021, , 69-90.	0.5	0
5	Industrial PID Control. Advances in Industrial Control, 2021, , 5-19.	0.5	0
6	Industrial PID Controller Tuning. Advances in Industrial Control, 2021, , .	0.5	7
7	PID Tuning as a Multiobjective Optimization Problem. Advances in Industrial Control, 2021, , 91-113.	0.5	0
8	Dual-Rate Data-Driven Virtual Reference Feedback Tuning: Improvement in Fast-Tracking Performance and Ripple-Free Design. IEEE Access, 2021, 9, 144426-144437.	4.2	6
9	Open-source low-cost Hardware-in-the-loop simulation platform for testing control strategies for artificial pancreas research. IFAC-PapersOnLine, 2019, 52, 275-280.	0.9	2
10	Pareto-based polynomial tuning rule for 2DoF PID controllers for time-delayed dominant processes with robustness consideration. , 2017, , .		2
11	Multi-objective optimization based tuning tool for industrial 2doF PID controllers * *This work was supported under grant 322-B4-218 by VicerrectorÃa de InvestigaciÃ ³ n de la Universidad de Costa Rica and partially supported by the Spanish Ministry of Economy and Competitiveness program under grants DPI2013-47825-C3-1-R, DPI2016-77271-R. IFAC-PapersOnLine, 2017, 50, 7511-7516.	0.9	4
12	Multi-objective optimal tuning of two degrees of freedom PID controllers using the ENNC method. , 2016, , .		5
13	Data-driven Control of the Activated Sludge Process: IMC plus Feedforward Approach. International Journal of Computers, Communications and Control, 2016, 11, 522.	1.8	6
14	Comparison of multi-objective optimization methods for PI controllers tuning. , 2015, , .		7
15	Procedure for Cascade Control Systems Design: Choice of Suitable PID Tunings. International Journal of Computers, Communications and Control, 2014, 3, 235.	1.8	14
16	Servo and Regulation Tuning of PID Control Using <i>M_s</i> -based Robustness. IEEJ Transactions on Electronics, Information and Systems, 2013, 133, 616-619.	0.2	0
17	Balanced Performance/Robustness PID Design. Lecture Notes in Electrical Engineering, 2012, , 91-108.	0.4	1