Ki Chang Kwon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4313059/ki-chang-kwon-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61
papers

2,257
citations

27
h-index

46
g-index

67
ext. papers

2,734
ext. citations

10.7
avg, IF

L-index

#	Paper	IF	Citations
61	Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing <i>Nano-Micro Letters</i> , 2022 , 14, 58	19.5	8
60	Tailoring the coercive field in ferroelectric metal-free perovskites by hydrogen bonding <i>Nature Communications</i> , 2022 , 13, 794	17.4	3
59	Data-driven discovery of high performance layered van der Waals piezoelectric NbOI <i>Nature Communications</i> , 2022 , 13, 1884	17.4	2
58	Strong Fermi-level pinning at metal contacts to halide perovskites. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 15212-15220	7.1	3
57	Edge-exposed WS2 on 1D nanostructures for highly selective NO2 sensor at room temperature. <i>Sensors and Actuators B: Chemical</i> , 2021 , 333, 129566	8.5	8
56	Microscopic evidence of strong interactions between chemical vapor deposited 2D MoS film and SiO growth template. <i>Nano Convergence</i> , 2021 , 8, 11	9.2	8
55	Multifunctional Properties of a Zn(II) Coordination Complex. Crystal Growth and Design, 2021, 21, 3401-	-3 4 98	4
54	Synthesis of atomically thin alloyed molybdenum-tungsten disulfides thin films as hole transport layers in organic light-emitting diodes. <i>Applied Surface Science</i> , 2021 , 541, 148529	6.7	2
53	Vertically aligned MoS2 thin film catalysts with Fe-Ni sulfide nanoparticles by one-step sulfurization for efficient solar water reduction. <i>Chemical Engineering Journal</i> , 2021 , 418, 129369	14.7	8
52	In-Plane Ferroelectric Tin Monosulfide and Its Application in a Ferroelectric Analog Synaptic Device. <i>ACS Nano</i> , 2020 , 14, 7628-7638	16.7	50
51	Energy Harvesting from Atmospheric Humidity by a Hydrogel-Integrated Ferroelectric-Semiconductor System. <i>Joule</i> , 2020 , 4, 176-188	27.8	52
50	Self-Powered Photodetector Using Two-Dimensional Ferroelectric Dion-Jacobson Hybrid Perovskites. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18592-18598	16.4	35
49	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic-Inorganic Perovskite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15972-15976	16.4	65
48	Boosting the photocatalytic hydrogen evolution performance via an atomically thin 2D heterojunction visualized by scanning photoelectrochemical microscopy. <i>Nano Energy</i> , 2019 , 65, 10405.	3 ^{17.1}	11
47	Pd- and Au-Decorated MoS2 Gas Sensors for Enhanced Selectivity. <i>Electronic Materials Letters</i> , 2019 , 15, 368-376	2.9	22
46	Electrocatalytic Water Splitting and CO2 Reduction: Sustainable Solutions via Single-Atom Catalysts Supported on 2D Materials. <i>Small Methods</i> , 2019 , 3, 1800492	12.8	41
45	SnS Nanograins on Porous SiO Nanorods Template for Highly Sensitive NO Sensor at Room Temperature with Excellent Recovery. <i>ACS Sensors</i> , 2019 , 4, 678-686	9.2	47

(2017-2019)

44	Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. <i>ACS Applied Materials & Amp;</i> Interfaces, 2019 , 11, 33835-33843	9.5	39
43	Two-Dimensional NbS Gas Sensors for Selective and Reversible NO Detection at Room Temperature. <i>ACS Sensors</i> , 2019 , 4, 2395-2402	9.2	57
42	2-Dimensional Materials: Electrocatalytic Water Splitting and CO2 Reduction: Sustainable Solutions via Single-Atom Catalysts Supported on 2D Materials (Small Methods 9/2019). <i>Small Methods</i> , 2019 , 3, 1970028	12.8	2
41	Gas sensing characteristics of the FET-type gas sensor having inkjet-printed WS2 sensing layer. <i>Solid-State Electronics</i> , 2019 , 153, 27-32	1.7	22
40	Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5016-5024	13	84
39	One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. <i>Applied Catalysis B: Environmental</i> , 2018 , 234, 213-222	21.8	24
38	Enhanced nucleation of germanium on graphene via dipole engineering. <i>Nanoscale</i> , 2018 , 10, 5689-5694	1 7.7	9
37	Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1700142	5.9	30
36	Au decoration of vertical hematite nanotube arrays for further selective detection of acetone in exhaled breath. <i>Sensors and Actuators B: Chemical</i> , 2018 , 274, 587-594	8.5	21
35	Synthesis of Numerous Edge Sites in MoS via SiO Nanorods Platform for Highly Sensitive Gas Sensor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 31594-31602	9.5	58
34	Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts. <i>Advanced Science</i> , 2018 , 5, 1800727	13.6	20
33	Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells. <i>Nano Energy</i> , 2018 , 50, 649-658	17.1	22
32	p-p Heterojunction of Nickel Oxide-Decorated Cobalt Oxide Nanorods for Enhanced Sensitivity and Selectivity toward Volatile Organic Compounds. <i>ACS Applied Materials & Compounds & Compou</i>	1058	63
31	Solar Water Splitting: Efficient Water Splitting Cascade Photoanodes with Ligand-Engineered MnO Cocatalysts (Adv. Sci. 10/2018). <i>Advanced Science</i> , 2018 , 5, 1870061	13.6	78
30	Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in Metal-Decoration-Induced Reduction of Graphene Oxide. <i>Advanced Materials</i> , 2017 , 29, 1605929	24	23
29	Synergetically Selective Toluene Sensing in Hematite-Decorated Nickel Oxide Nanocorals. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600259	6.8	32
28	Graphene Oxide: Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in Metal-Decoration-Induced Reduction of Graphene Oxide (Adv. Mater. 15/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
27	Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15534-15542	13	57

26	Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. <i>MRS Communications</i> , 2017 , 7, 272-279	2.7	22
25	Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius. <i>ACS Applied Materials & Description of the Extremely Low Bending Radius and Extremely Radius and Radius</i>	9.5	109
24	Polarized Light-Emitting Diodes Based on Patterned MoS Nanosheet Hole Transport Layer. <i>Advanced Materials</i> , 2017 , 29, 1702598	24	52
23	Tailoring catalytic activities of transition metal disulfides for water splitting. <i>FlatChem</i> , 2017 , 4, 68-80	5.1	19
22	Ion-beam-irradiated CYTOP-transferred graphene for liquid crystal cells. <i>Electronic Materials Letters</i> , 2017 , 13, 277-285	2.9	1
21	Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 23793-800	9.5	21
20	Inhibition of Ion Migration for Reliable Operation of Organolead Halide Perovskite-Based Metal/Semiconductor/Metal Broadband Photodetectors. <i>Advanced Functional Materials</i> , 2016 , 26, 4213	-4522	97
19	Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. <i>Energy and Environmental Science</i> , 2016 , 9, 2240-2248	35.4	150
18	Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3929-3935	3.8	76
17	Effect of Amine-Based Organic Compounds on the Work-Function Decrease of Graphene. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 1309-1316	3.8	7
16	Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film. <i>Scientific Reports</i> , 2016 , 6, 19580	4.9	17
15	Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. <i>Journal of Power Sources</i> , 2016 , 319, 1-8	8.9	78
14	Challenge beyond Graphene: Metal Oxide/Graphene/Metal Oxide Electrodes for Optoelectronic Devices. <i>ACS Applied Materials & Devices</i> , 2016 , 8, 12932-9	9.5	15
13	Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices. <i>ACS Nano</i> , 2015 , 9, 4146-55	16.7	76
12	Eco-friendly graphene synthesis on Cu foil electroplated by reusing Cu etchants. <i>Scientific Reports</i> , 2014 , 4, 4830	4.9	12
11	Extended thermal stability in metal-chloride doped graphene using graphene overlayers. <i>Chemical Engineering Journal</i> , 2014 , 244, 355-363	14.7	9
10	Comparison of metal chloride-doped graphene electrode fabrication processes for GaN-based light emitting diodes. <i>RSC Advances</i> , 2014 , 4, 51215-51219	3.7	3
9	Role of Metal Cations in Alkali Metal Chloride Doped Graphene. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8187-8193	3.8	27

LIST OF PUBLICATIONS

8	Fluoropolymer-assisted graphene electrode for organic light-emitting diodes. <i>Organic Electronics</i> , 2014 , 15, 3154-3161	3.5	19	
7	Effect of transition-metal chlorides on graphene properties. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 1794-1800	1.6	17	
6	Ion beam irradiation of few-layer graphene and its application to liquid crystal cells. <i>Carbon</i> , 2014 , 67, 352-359	10.4	17	
5	Extension of stability in organic photovoltaic cells using UV/ozone-treated graphene sheets. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 109, 148-154	6.4	37	
4	Role of ionic chlorine in the thermal degradation of metal chloride-doped graphene sheets. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 253-259	7.1	22	
3	Effect of anions in Au complexes on doping and degradation of graphene. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2463	7.1	48	
2	Work-Function Decrease of Graphene Sheet Using Alkali Metal Carbonates. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 26586-26591	3.8	80	
1	Increased Work Function in Few-Layer Graphene Sheets via Metal Chloride Doping. <i>Advanced Functional Materials</i> , 2012 , 22, 4724-4731	15.6	212	