Valeria M Nurchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4312906/publications.pdf

Version: 2024-02-01

160 papers 5,685 citations

36 h-index 95218 68 g-index

164 all docs

164 docs citations

164 times ranked 6881 citing authors

#	Article	IF	CITATIONS
1	Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, 2015, 284, 329-350.	9.5	586
2	The essential metals for humans: a brief overview. Journal of Inorganic Biochemistry, 2019, 195, 120-129.	1.5	533
3	Silver coordination compounds: A new horizon in medicine. Coordination Chemistry Reviews, 2016, 327-328, 349-359.	9 . 5	213
4	Copper-related diseases: From chemistry to molecular pathology. Coordination Chemistry Reviews, 2010, 254, 876-889.	9.5	199
5	Medical Uses of Silver: History, Myths, and Scientific Evidence. Journal of Medicinal Chemistry, 2019, 62, 5923-5943.	2.9	186
6	Toxicity of Nanoparticles. Current Medicinal Chemistry, 2014, 21, 3837-3853.	1.2	179
7	Iron chelating agents for the treatment of iron overload. Coordination Chemistry Reviews, 2008, 252, 1225-1240.	9.5	141
8	Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules, 2020, 10, 235.	1.8	134
9	Stress and \hat{l}^2 -carbolines decrease the density of low affinity gaba binding sites. Brain Research, 1984, 305, 13-18.	1.1	103
10	Uneven hepatic copper distribution in Wilson's disease. Journal of Hepatology, 1995, 22, 303-308.	1.8	98
11	Agricultural biomasses as sorbents of some trace metals. Coordination Chemistry Reviews, 2008, 252, 1178-1188.	9.5	96
12	Potentiometric, spectrophotometric and calorimetric study on iron(III) and copper(II) complexes with 1,2-dimethyl-3-hydroxy-4-pyridinone. Journal of Inorganic Biochemistry, 2008, 102, 684-692.	1.5	95
13	Chelating agents for human diseases related to aluminium overload. Coordination Chemistry Reviews, 2012, 256, 89-104.	9.5	95
14	Uneven hepatic iron and phosphorus distribution in beta-thalassemia. Journal of Hepatology, 1995, 23, 544-549.	1.8	91
15	The meaning of aluminium exposure on human health and aluminium-related diseases. Biomolecular Concepts, 2013, 4, 77-87.	1.0	80
16	A Review on Coordination Properties of Thiol-Containing Chelating Agents Towards Mercury, Cadmium, and Lead. Molecules, 2019, 24, 3247.	1.7	80
17	Effect of substituents on complex stability aimed at designing new iron(III) and aluminum(III) chelators. Journal of Inorganic Biochemistry, 2009, 103, 227-236.	1.5	70
18	Chemical equilibria in wastewaters during toxic metal ion removal by agricultural biomass. Coordination Chemistry Reviews, 2010, 254, 2181-2192.	9.5	68

#	Article	IF	Citations
19	Bisphosphonate chelating agents: complexation of Fe(III) and Al(III) by 1-phenyl-1-hydroxymethylene bisphosphonate and its analogues. Inorganica Chimica Acta, 2002, 339, 111-118.	1.2	62
20	Zinc in gastrointestinal and liver disease. Coordination Chemistry Reviews, 2008, 252, 1257-1269.	9.5	62
21	Depleted Uranium and Human Health. Current Medicinal Chemistry, 2018, 25, 49-64.	1.2	61
22	Iron(III) and aluminum(III) complexes with hydroxypyrone ligands aimed to design kojic acid derivatives with new perspectives. Journal of Inorganic Biochemistry, 2010, 104, 560-569.	1.5	55
23	Human diseases related to aluminium overload. Monatshefte Für Chemie, 2011, 142, 331-340.	0.9	53
24	A Windmill-Shaped Hexacopper(II) Molecule Built Up by Template Core-Controlled Expansion of Diaquatetrakis(1½2-adeninato-N3,N9)dicopper(II) with Aqua(oxydiacetato)copper(II). Inorganic Chemistry, 2006, 45, 877-882.	1.9	51
25	Brain copper, iron, magnesium, zinc, calcium, sulfur and phosphorus storage in Wilson's disease. Journal of Trace Elements in Medicine and Biology, 2001, 15, 155-160.	1.5	50
26	Sorption of toxic metal ions by solid sorbents: A predictive speciation approach based on complex formation constants in aqueous solution. Coordination Chemistry Reviews, 2012, 256, 212-221.	9.5	50
27	Complex formation equilibria of Cu ^{II} and Zn ^{II} with triethylenetetramine and its mono- and di-acetyl metabolites. Dalton Transactions, 2013, 42, 6161-6170.	1.6	48
28	Chelating principles in Menkes and Wilson diseases. Journal of Inorganic Biochemistry, 2019, 190, 98-112.	1.5	45
29	Kojic acid derivatives as powerful chelators for iron(iii) and aluminium(iii). Dalton Transactions, 2011, 40, 5984.	1.6	44
30	Kill or cure: Misuse of chelation therapy for human diseases. Coordination Chemistry Reviews, 2015, 284, 278-285.	9.5	44
31	The Role of Magnesium in Pregnancy and in Fetal Programming of Adult Diseases. Biological Trace Element Research, 2021, 199, 3647-3657.	1.9	43
32	Gold - Old Drug with New Potentials. Current Medicinal Chemistry, 2018, 25, 75-84.	1.2	42
33	Metal ion binding modes of hypoxanthine and xanthine versus the versatile behaviour of adenine. Coordination Chemistry Reviews, 2012, 256, 193-211.	9.5	41
34	Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coordination Chemistry Reviews, 2016, 327-328, 55-69.	9.5	39
35	Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. Journal of Inorganic Biochemistry, 2019, 199, 110717.	1.5	39
36	Simultaneous decomposition of several spectra into the constituent Gaussian peaks. Analytica Chimica Acta, 1995, 316, 195-204.	2.6	37

#	Article	IF	Citations
37	A Speciation Study on the Perturbing Effects of Iron Chelators on the Homeostasis of Essential Metal lons. PLoS ONE, 2015, 10, e0133050.	1.1	37
38	Chemical features of in use and in progress chelators for iron overload. Journal of Trace Elements in Medicine and Biology, 2016, 38, 10-18.	1.5	37
39	Biomass against emerging pollution in wastewater: Ability of cork for the removal of ofloxacin from aqueous solutions at different pH. Journal of Environmental Chemical Engineering, 2013, 1, 1199-1204.	3.3	35
40	Characterization of the ionization and spectral properties of sulfonephthalein indicators. Correlation with substituent effects and structural features. Part II. Talanta, 1995, 42, 1157-1163.	2.9	34
41	Oral iron chelators for clinical use. Polyhedron, 1999, 18, 3219-3226.	1.0	34
42	Nickel binding sites in histone proteins: Spectroscopic and structural characterization. Coordination Chemistry Reviews, 2013, 257, 2737-2751.	9.5	34
43	Unravelling the versatile metal binding modes of adenine: Looking at the molecular recognition patterns of deaza- and aza-adenines in mixed ligand metal complexes. Coordination Chemistry Reviews, 2013, 257, 2814-2838.	9.5	34
44	Reliability of association constants of $1:1$ molecular complexes from spectrophotometric data. Tetrahedron, $1981, 37, 2115-2119$.	1.0	30
45	Equilibrium study on Cd(II) and Zn(II) chelates of mercapto carboxylic acids. Polyhedron, 2002, 21, 1319-1327.	1.0	30
46	Chelating Agents for Metal Intoxication. Current Medicinal Chemistry, 2012, 19, 2794-2815.	1.2	30
47	A new bis-3-hydroxy-4-pyrone as a potential therapeutic iron chelating agent. Effect of connecting and side chains on the complex structures and metal ion selectivity. Journal of Inorganic Biochemistry, 2014, 141, 132-143.	1.5	30
48	Gold Nanoparticles: A New Golden Era in Oncology?. Pharmaceuticals, 2020, 13, 192.	1.7	30
49	Characterization of the ionization and spectral properties of sulfonephthalein indicators. Correlation with substituent effects and structural features. Talanta, 1993, 40, 1781-1788.	2.9	29
50	Different approaches to the study of chelating agents for iron and aluminium overload pathologies. Analytical and Bioanalytical Chemistry, 2013, 405, 585-601.	1.9	29
51	Searching for new aluminium chelating agents: A family of hydroxypyrone ligands. Journal of Inorganic Biochemistry, 2014, 130, 112-121.	1.5	28
52	Sorption of chrysoidine by row cork and cork entrapped in calcium alginate beads. Arabian Journal of Chemistry, 2014, 7, 133-138.	2.3	28
53	Toxicity of Nanoparticles: Etiology and Mechanisms. , 2017, , 511-546.		28
54	Does Iron Concentration in a Liver Needle Biopsy Accurately Reflect Hepatic Iron Burden in \hat{l}^2 -Thalassemia?. Clinical Chemistry, 2000, 46, 1185-1188.	1.5	27

#	Article	lF	Citations
55	Copper(II) and nickel(II) uptake from aqueous solutions by cork wastes: a NMR and potentiometric study. Polyhedron, 2002, 21, 1363-1367.	1.0	27
56	Thiodiacetato-copper(II) chelates with or without N-heterocyclic donor ligands: molecular and/or crystal structures of [Cu(tda)]n, [Cu(tda)(Him)2(H2O)] and [Cu(tda)(5Mphen)]·2H2O (Him=imidazole,) Tj ETC	Qq Q1Q 20 rg	BT ⊅ 0verlock 1
57	A family of hydroxypyrone ligands designed and synthesized as iron chelators. Journal of Inorganic Biochemistry, 2013, 127, 220-231.	1.5	27
58	Hydroxypyridinones with enhanced iron chelating properties. Synthesis, characterization and in vivo tests of 5-hydroxy-2-(hydroxymethyl)pyridine-4(1H)-one. Dalton Transactions, 2016, 45, 6517-6528.	1.6	27
59	Deferoxamine–paper for iron(III) and vanadium(V) sensing. Chemical Papers, 2015, 69, .	1.0	26
60	Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors. Pharmaceuticals, 2021, 14, 123.	1.7	26
61	Structural correlations in nickel(II)–thiodiacetato complexes: molecular and crystal structures and properties of [Ni(tda)(H2O)3]. Inorganic Chemistry Communication, 2004, 7, 1277-1280.	1.8	25
62	New insights into the protogenic and spectroscopic properties of commercial tannic acid: the role of gallic acid impurities. New Journal of Chemistry, 2018, 42, 7703-7712.	1.4	25
63	Evidence for an involvement of GABA receptors in the mediation of the proconvulsant action of ethyl-β-carboline-3-carboxylate. Neuropharmacology, 1984, 23, 323-326.	2.0	23
64	Gas chromatography analysis of major free mono―and disaccharides in milk: Method assessment, validation, and application to real samples. Journal of Separation Science, 2016, 39, 4577-4584.	1.3	23
65	Medical Therapy of Patients Contaminated with Radioactive Cesium or Iodine. Biomolecules, 2019, 9, 856.	1.8	23
66	A potentiometric, spectrophotometric and 1H NMR study on the interaction of cimetidine, famotidine and ranitidine with platinum(II) and palladium(II) metal ions. Polyhedron, 1995, 14, 1517-1530.	1.0	22
67	Novel DFO-functionalized mesoporous silica for iron sensing. Part 2. Experimental detection of free iron concentration (pFe) in urine samples. Analyst, The, 2014, 139, 3940-3948.	1.7	22
68	A new tripodal kojic acid derivative for iron sequestration: Synthesis, protonation, complex formation studies with Fe3+, Al3+, Cu2+ and Zn2+, and in vivo bioassays. Journal of Inorganic Biochemistry, 2019, 193, 152-165.	1.5	22
69	Synthesis and characterization of metal derivatives of dihydrolipoic acid and dihydrolipoamide. Inorganica Chimica Acta, 1992, 192, 237-242.	1.2	21
70	Characterization of the ionization and spectral properties of mercapto-carboxylic acids Correlation with substituents and structural features. Talanta, 1996, 43, 1357-1366.	2.9	21
71	Substituent effects on ionisation and 13C NMR properties of some monosubstituted phenolsA potentiometric, spectrophotometric and 13C NMR study. Talanta, 2002, 56, 441-449.	2.9	21
72	Manganese and cobalt binding in a multi-histidinic fragment. Dalton Transactions, 2013, 42, 16293.	1.6	21

#	Article	IF	CITATIONS
73	Chelating Agents in Soil Remediation: A New Method for a Pragmatic Choice of the Right Chelator. Frontiers in Chemistry, 2020, 8, 597400.	1.8	21
74	Potentiometric and spectrophotometric equilibrium study on Fe(III) and new catechol-bisphosphonate conjugates. Journal of Inorganic Biochemistry, 2008, 102, 209-215.	1.5	20
75	Novel DFO-SAM on mesoporous silica for iron sensing. Part I. Synthesis optimization and characterization of the material. Analyst, The, 2014, 139, 3932.	1.7	20
76	Towards a new attenuating compound: A potentiometric, spectrophotometric and NMR equilibrium study on Fe(III), Al(III) and a new tetradentate mixed bisphosphonate–hydroxypyridinonate ligand. Journal of Inorganic Biochemistry, 2008, 102, 1486-1494.	1.5	19
77	9. CHROMIUM SUPPLEMENTATION IN HUMAN HEALTH, METABOLIC SYNDROME, AND DIABETES. , 2019, 19, 231-252.		19
78	The Aging Kidneyâ€"As Influenced by Heavy Metal Exposure and Selenium Supplementation. Biomolecules, 2021, 11, 1078.	1.8	19
79	The Involvement of Amino Acid Side Chains in Shielding the Nickel Coordination Site: An NMR Study. Molecules, 2013, 18, 12396-12414.	1.7	18
80	Metal coordination and tyrosinase inhibition studies with Kojic- \hat{l}^2 Ala-Kojic. Journal of Inorganic Biochemistry, 2015, 151, 36-43.	1.5	18
81	Fluoroquinolones: A micro-species equilibrium in the protonation of amphoteric compounds. European Journal of Pharmaceutical Sciences, 2016, 93, 380-391.	1.9	18
82	Tungsten or Wolfram: Friend or Foe?. Current Medicinal Chemistry, 2018, 25, 65-74.	1.2	18
83	Gadolinium in Medical Imaging—Usefulness, Toxic Reactions and Possible Countermeasures—A Review. Biomolecules, 2022, 12, 742.	1.8	18
84	A portable, disposable, and low-cost optode for sulphide and thiol detection. Analytical Methods, 2019, 11, 4464-4470.	1.3	17
85	Thermodynamic remarks on chelating ligands for aluminium related diseases. Journal of Inorganic Biochemistry, 2011, 105, 1518-1522.	1.5	16
86	HPLC determination of pantothenic acid in royal jelly. Analytical Methods, 2013, 5, 6682.	1.3	15
87	Zinc(II) and copper(II) complexes with hydroxypyrone iron chelators. Journal of Inorganic Biochemistry, 2015, 151, 94-106.	1.5	15
88	New strong extrafunctionalizable tris(3,4-HP) and bis(3,4-HP) metal sequestering agents: synthesis, solution and <i>in vivo</i> metal chelation. Dalton Transactions, 2019, 48, 16167-16183.	1.6	15
89	Sorption of ofloxacin and chrysoidine by grape stalk. A representative case of biomass removal of emerging pollutants from wastewater. Arabian Journal of Chemistry, 2019, 12, 1141-1147.	2.3	15
90	An NMR study on the $6,6\hat{a}\in^2$ -(2-(diethylamino)ethylazanediyl)bis(methylene)bis(5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) interaction with AlIII and ZnII ions. Journal of Inorganic Biochemistry, 2015, 148, 69-77.	1.5	14

#	Article	IF	Citations
91	<i>para</i> -Aminosalicylic acid in the treatment of manganese toxicity. Complexation of Mn ²⁺ with 4-amino-2-hydroxybenzoic acid and its <i>N</i> -acetylated metabolite. New Journal of Chemistry, 2018, 42, 8035-8049.	1.4	14
92	Synthesis and characterization of iron derivatives of dihydrolipoic acid and dihydrolipoamide. Inorganica Chimica Acta, 1992, 195, 109-115.	1.2	13
93	Free fluoride determination in honey by ion-specific electrode potentiometry: Method assessment, validation and application to real unifloral samples. Arabian Journal of Chemistry, 2018, 11, 492-500.	2.3	13
94	A new tripodal-3-hydroxy-4-pyridinone for iron and aluminium sequestration: synthesis, complexation and <i>in vivo</i> studies. New Journal of Chemistry, 2018, 42, 8050-8061.	1.4	13
95	Metal self-assembly mimosine peptides with enhanced antimicrobial activity: towards a new generation of multitasking chelating agents. Dalton Transactions, 2020, 49, 2862-2879.	1.6	13
96	A Friendly Complexing Agent for Spectrophotometric Determination of Total Iron. Molecules, 2021, 26, 3071.	1.7	13
97	Nutritional Iron Deficiency: The Role of Oral Iron Supplementation. Current Medicinal Chemistry, 2014, 21, 3775-3784.	1.2	13
98	Evaluation of a Fibre Optic Device in Solution Equilibria Studies. Application to 3-Hydroxybenzoic Acid lonization. Annali Di Chimica, 2004, 94, 147-153.	0.6	12
99	IronIII and aluminiumIII complexes with substituted salicyl-aldehydes and salicylic acids. Journal of Inorganic Biochemistry, 2013, 128, 174-182.	1.5	12
100	Chelating Agents as Therapeutic Compounds—Basic Principles. , 2016, , 35-61.		12
101	Inexpensive Alizarin Red S-based optical device for the simultaneous detection of Fe(III) and Al(III). Microchemical Journal, 2019, 149, 104036.	2.3	12
102	Complex formation equilibria of polyamine ligands with copper(II) and zinc(II). Journal of Inorganic Biochemistry, 2019, 194, 26-33.	1.5	12
103	Optimization of a newly established gas-chromatographic method for determining lactose and galactose traces: Application to Pecorino Romano cheese. Journal of Food Composition and Analysis, 2018, 74, 89-94.	1.9	11
104	Equilibrium studies of new bis-hydroxypyrone derivatives with Fe3+, Al3+, Cu2+ and Zn2+. Journal of Inorganic Biochemistry, 2018, 189, 103-114.	1.5	11
105	DFO@EVOH and 3,4-HP@EVOH: Towards New Polymeric Sorbents for Iron(III). Chemosensors, 2020, 8, 111.	1.8	11
106	Chelation Therapy for Metal Intoxication: Comments from a Thermodynamic Viewpoint. Mini-Reviews in Medicinal Chemistry, 2013, 13, 1541-1549.	1.1	11
107	Adduct formation of some tris(N,N dialkyldithiocarbamato)Cr(III) complexes with iodine. Polyhedron, 1984, 3, 1241-1245.	1.0	10
108	N,N′-Ethylenediaminobis(benzylphosphonic acids) as a potent class of chelators for metal ions. Inorganica Chimica Acta, 2009, 362, 707-713.	1.2	10

#	Article	IF	CITATIONS
109	Iron Chelating Agents for Iron Overload Diseases. Thalassemia Reports, 2014, 4, 2046.	0.1	10
110	Simple solid-phase spectrophotometric method for free iron(III) determination. Arabian Journal of Chemistry, 2019, 12, 573-579.	2.3	10
111	An investigation on the interaction between palladium(II) and L-citrulline by 1H and 13C NMR spectroscopy and potentiometry. Polyhedron, 1991, 10, 333-336.	1.0	9
112	An 1H NMR and potentiometric study of the interaction between platinum(II) and cimetidine. Polyhedron, 1992, 11, 2723-2727.	1.0	9
113	Oxovanadium(IV) Coordination Compounds with Kojic Acid Derivatives in Aqueous Solution. Molecules, 2019, 24, 3768.	1.7	9
114	Determination of 5-hydroxymethyl-2-furaldehyde in royal jelly by a rapid reversed phase HPLC method. Analytical Methods, 2013, 5, 5010.	1.3	8
115	Chelating Agents as Tools for the Treatment of Metal Overload. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1321-1331.	0.6	8
116	Interaction of Cu(II) and Ni(II) with Ypk9 Protein Fragment <i>via</i> NMR Studies. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	8
117	A Possible Freshness Marker for Royal Jelly: Formation of 5-Hydroxymethyl-2-furaldehyde as a Function of Storage Temperature and Time. Journal of Agricultural and Food Chemistry, 2015, 63, 4190-4195.	2.4	8
118	Development of a sensor for trivalent iron: AHP fixed on mesoporous silica. New Journal of Chemistry, 2018, 42, 15237-15244.	1.4	8
119	Changes in the characteristics of low affinity GABA binding sites elicited by Ro15-1788. Life Sciences, 1985, 36, 329-337.	2.0	7
120	Reliability of the parameters in the resolution of overlapped Gaussian peaks. Analytica Chimica Acta, 1993, 281, 197-206.	2.6	7
121	Spectrophotometric and potentiometric study on platinum(II) chelates of mercapto carboxylic acids. Polyhedron, 2000, 19, 2435-2440.	1.0	7
122	Aluminium-dependent human diseases and chelating properties of aluminium chelators for biomedical applications., 2012,, 103-123.		7
123	Equilibrium study on Pd(II) chelates of mercapto carboxylic acids. Polyhedron, 1999, 18, 3257-3262.	1.0	6
124	Interaction of a chelating agent, 5-hydroxy-2-(hydroxymethyl)pyridin-4(1 H)-one, with Al(III), Cu(II) and Zn(II) ions. Journal of Inorganic Biochemistry, 2017, 171, 18-28.	1.5	6
125	Complex formation equilibria of Cu2+ and Zn2+ with Irbesartan and Losartan. European Journal of Pharmaceutical Sciences, 2017, 97, 158-169.	1.9	6
126	An 27Al and 13CN.M.R. study of the Complexes between Al3+ and Various Organic Molecules Containing the Amide Group in Concentrated Aqueous Solution. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1984, 39, 1235-1241.	0.7	5

#	Article	IF	CITATIONS
127	1H and 13C NMR studies of (phenylethynyl) (triphenylphosphine) gold(I). Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 615-621.	0.1	5
128	Interaction between aspergillic acid and iron(III): A potentiometric, UV–Vis, 1H NMR and quantum chemical study. Polyhedron, 2009, 28, 763-768.	1.0	5
129	Molecular recognition between adenine or 2,6-diaminopurine and copper(II) chelates with N,O2,S-tripodal tetradentate chelators having thioether or disulfide donor groups. Journal of Inorganic Biochemistry, 2015, 151, 75-86.	1.5	5
130	Unusual PLS application for Pd(<scp>ii</scp>) sensing in extremely acidic solutions. New Journal of Chemistry, 2018, 42, 7901-7907.	1.4	5
131	Kojic acid derivatives as double face ligands for metal and phosphate ions Journal of Inorganic Biochemistry, 2021, 222, 111520.	1.5	5
132	The Potential Clinical Properties of Magnesium. Current Medicinal Chemistry, 2021, 28, 7295-7311.	1.2	5
133	Computation of acidity constants of a polyprotic acid from nuclear magnetic resonance or u.vvisible spectrophotometric data. Analytica Chimica Acta, 1986, 184, 77-85.	2.6	4
134	Potentiometric and 13C NMR study of the interaction between boric acid and pyrogallol (1,2,3-trihydroxybenzene). Polyhedron, 1990, 9, 789-793.	1.0	4
135	A BASIC program for least-squares estimation of the parameters influencing line shapes in multi-site chemical exchange in nuclear magnetic resonance spectrometry. Analytica Chimica Acta, 1990, 239, 157-160.	2.6	4
136	Chemometric Methods Applied to an ICP-AES Study of Chemical Element Distributions in Autopsy Livers from Subjects Affected by Wilson and \hat{l}^2 - Thalassemia. Journal of Trace Elements in Medicine and Biology, 1995, 9, 215-221.	1.5	4
137	Spectrophotometric and potentiometric study on iron(II) complexes with some macrocyclic ligands. Inorganica Chimica Acta, 2001, 323, 62-68.	1.2	4
138	Metal Ion Uptake from Aqueous Solution by Olive Stones: A Carbonâ€13 Solidâ€6tate Nuclear Magnetic Resonance and Potentiometric Study. Water Environment Research, 2007, 79, 2363-2367.	1.3	4
139	Use of Cyclic Voltammetry to Evaluate Sorption Properties of Cork Residues Towards Mn(II) in Waters. Journal of Solution Chemistry, 2008, 37, 477-485.	0.6	4
140	Substituent effects on ionization constants as a predictive tool of coordinating ability. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2016, 147, 719-724.	0.9	4
141	Salicylamide derivatives for iron and aluminium sequestration. From synthesis to complexation studies. Journal of Trace Elements in Medicine and Biology, 2018, 50, 580-588.	1.5	4
142	Thermodynamic Study of Oxidovanadium(IV) with Kojic Acid Derivatives: A Multi-Technique Approach. Pharmaceuticals, 2021, 14, 1037.	1.7	4
143	Substituent effect on carbon-13 chemical shifts of 3-(para substituted) Tj ETQq1 1 0.784314 rgBT /Overlock 10 797-799.	Tf 50 107 0.1	Td (benzoyl) 3
144	Determination of ionization constants of a polyprotic acid with use of least-squares methods. Analytica Chimica Acta, 1989, 222, 359-367.	2.6	3

#	Article	IF	CITATIONS
145	A multinuclear NMR study on the microscopic ionization constants of adenosine-5′-triphosphate in aqueous solution. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1643-1649.	0.1	3
146	REACTION BETWEEN [PdCl ₄] ²⁻ AND 5,5-DIMETHYL-2-THIOXOIMIDAZOLIDIN-4-ONE. Journal of Coordination Chemistry, 1993, 30, 293-303.	0.8	3
147	Validation and applications of a GC-ECD method for the determination of polychlorinated biphenyls in fish and seafood. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2013, 144, 1597-1606.	0.9	3
148	Looking at new ligands for chelation therapy. New Journal of Chemistry, 2018, 42, 8021-8034.	1.4	3
149	Renal Copper Content and Distribution in Wilson's Disease. Journal of Urologic Pathology, 2000, 13, 23-30.	0.3	3
150	A BASIC computer program for the determination of binding parameters in a complex system. Biochemical Education, 1986, 14, 79-81.	0.1	2
151	Study of the copper(II)-Aztreonamâ, ¢ system by potentiometry and spectrophotometry, and structural characterization by 13C NMR relaxation. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 29-39.	0.1	2
152	Copper-Induced Epigenetic Changes Shape the Clinical Phenotype in Wilson's Disease. Current Medicinal Chemistry, 2021, 28, 2707-2716.	1.2	2
153	Clinical Therapy of Patients Contaminated with Polonium or Plutonium. Current Medicinal Chemistry, 2021, 28, 7238-7246.	1.2	2
154	A study on the binding of diazepam to serum albumins by T1 NMR measurements. Biochemical Pharmacology, 1983, 32, 3241-3243.	2.0	1
155	Editorial: Applications of Medicinal Bioinorganic Chemistry. Current Medicinal Chemistry, 2018, 25, 3-4.	1.2	1
156	Synthesis and Mass Spectrometry Analysis of Mimosine-Containing Peptides. International Journal of Peptide Research and Therapeutics, 2021, 27, 379-384.	0.9	1
157	Copper uptake and trafficking in the brain. , 2012, , 47-63.		1
158	A Multi-Technique Investigation of the Complex Formation Equilibria between Bis-Deferiprone Derivatives and Oxidovanadium (IV). Molecules, 2022, 27, 1555.	1.7	1
159	Editorial [Hot Topic: Chelating Agents in Different Human Diseases (Guest Editor: Valeria Marina) Tj ETQq1 1 0.78	4314 rgBT 1.2	 Overlock
160	Medicinal bio-inorganic chemistry: papers from the Third International Summer School of Bioinorganic Medicinal Chemistry, Cagliari, Italy. Journal of Inorganic Biochemistry, 2019, 199, 110798.	1.5	0